

HTML Fixes for Kindle

Getting Started 3!

1 Working with HTML 7!
HTML and Kindle 8!
HTML Export 11!
HTML Editing 14!
HTML Processing 20!
HTML Basics 24!
HTML Checking 35!
HTML Cleanup 40!
HTML Testing 51!
HTML and Apps 55!

2 HTML Fixes 57!
Fixes for Fonts 58!
Fixes for Paragraphs 66!
Fixes for Headings 76!
Fixes for Line Breaking 78!
Fixes for Pictures 97!
Fixes for Navigation 104!

MORE BOOKS FOR YOU 111!

Please Note!

This is an emulation of the original
book as it appears on Kindle. For this

reason, it purposely breaks some
conventions of printed books.

HTML FIXES FOR KINDLE

Advanced Self Publishing for Kindle Books,
or Tips on Tweaking Your App’s HTML

So Your Ebooks Look Their Best

By Aaron Shepard

Shepard Publications
Bellingham, Washington

Copyright © 2013–2018 by Aaron Shepard
POD Version 2.9

(Ebook Version 2.8)

HTML FIXES FOR KINDLE

2

Aaron Shepard is a foremost proponent of the new
business of profitable self publishing, which he has
practiced and helped develop since 1998. Unlike most
authorities on self publishing, he makes the bulk of his
living from his self-published books—not from
consulting, speaking, freelance writing, or selling
publishing services. He lives in Bellingham,
Washington, with his wife and fellow author, Anne L.
Watson.

The Kindle Publishing Series
From Word to Kindle ~ Pictures on Kindle ~

HTML Fixes for Kindle

The Print Publishing Series
Aiming at Amazon ~ POD for Profit ~ Perfect Pages

The Kidwriting Series
The Business of Writing for Children ~ Adventures in

Writing for Children

For updates and more resources,
visit Aaron’s Publishing Page at

www.newselfpublishing.com

HTML FIXES FOR KINDLE

3

Getting Started

If you’re publishing on Kindle, chances are you want
your book to look its very best. But that often requires a
task not performed by most Kindle authors—namely,
refining the HTML you submit.

Many authors follow Amazon’s recommended
approach to create their Kindle book: Compose in
Microsoft Word, export to HTML—the language of
ebooks and the Web—then submit to Amazon KDP. It’s
an approach I discuss in detail in my earlier book From
Word to Kindle.

Done correctly, formatting in Word or another word
processor can bring you maybe 80% of the way to a
well-formatted ebook. But if you want your book to look
as good as it can, there’s that other 20% to worry about.
Now, perfection is not really possible on the Kindle,
given the quirks, bugs, and limitations of the platform
itself. But you can come closer—if you’re willing to
tinker with HTML.

Does that idea scare you? It doesn’t need to. You don’t
have to read that language (though it certainly won’t
hurt if you do want to learn). All you need is to be able to
recognize small bits of code I’ll point out to you, and
shift them or replace them with other bits. And all these
changes can be done with find-and-replace operations.
In fact, if you set up a master macro as I recommend, the
whole job can be finished in seconds.

HTML FIXES FOR KINDLE

4

Here are some of the things you can accomplish
through changes in HTML.

• Adjust bookmarks so headings retain proper
formatting when jumped to.

• Remove settings that stop the user from choosing
their own.

• Keep fonts from appearing much too small or much
too large when the book is opened.

• Make sure indents and other spacing stays relative
to larger and smaller font sizes.

• Avoid line breaks that leave short words dangling at
the ends of lines or paragraphs.

• Make up for features lost in translation from your
word processor, like nonbreaking hyphens.

• Stop “ghost hyphens” from appearing in the middle
of words.

• Turn off automatic hyphenation in headings,
poetry, or software code.

• Keep pages of text from disappearing for some
users.

• Block the Kindle from applying its own defaults in
place of your settings.

Since Word is the most common tool for generating
HTML for Kindle, I’ll focus mostly on Word’s exported
code, making this book a perfect companion to my
earlier one. Instructions are based on desktop Word
versions from 2003/2004 to 2010/2011.

The general principles I provide, though, should still
help if you’re using a different word processor, or a
specialized ebook tool like Scrivener, Vellum, or Jutoh,
or even if you’re writing HTML directly. In fact, I’ll

HTML FIXES FOR KINDLE

5

provide some tips on Kindle formatting with HTML that
you won’t find even in books dedicated to that
approach.

For updates and related materials, please visit my
Publishing Page at

www.newselfpublishing.com

While there, be sure to sign up for my email bulletin, so
you’ll know when I have anything new, including
revisions of this book. And though I’m not able to
provide technical support or consulting, I’m always glad
to receive comments, as well as suggestions on how my
books might be improved.

HTML FIXES FOR KINDLE

6

WARNINGS!

Everything in this book has been tested, but not all
conditions and variations can be foreseen. When trying out
suggested operations, always test first on a file copy you can
afford to lose!

Some Kindles, when breaking a line in the middle of a
Web address or HTML code sample, may insert a hyphen
where one doesn’t belong. If you’re not sure whether a
hyphen you see in this book should be there, change your
font size to move or remove the line break and see if the
hyphen remains.

Even if a Kindle lets you copy and paste code samples
and Web addresses directly from this book, don’t do it! They
may include extra, invisible formatting characters to help
them display better on screen.

1
Working with HTML

HTML FIXES FOR KINDLE

8

HTML and Kindle

This is not the beginning of the book. If it opened here
automatically, please page backward for important
information.

HTML is the language of Web pages, and Kindle books
are basically Web pages divided into screen-size pieces.
Though Amazon lets you submit your book as a Word
document, PDF, or plain text, Amazon must convert
these formats into HTML before creating your Kindle
book. It only makes sense, then, to do that conversion
yourself, so you can control the results.

There are actually two Kindle book formats. The
older one is called Mobipocket—MOBI, for short—after
the company that created it and that was then acquired
by Amazon. This is a rudimentary, outdated format,
using only a small subset of HTML and therefore
allowing only very limited formatting.

Starting in 2011, Amazon began moving to Kindle
Format 8, or KF8. This format is more modern,
accommodating much more of HTML and its
formatting capabilities. It was used first on newer kinds
of Kindle like the Fire and Paperwhite, and Amazon has
now migrated it to some older kinds as well. But this is
probably not even possible for some of the oldest, which
are still in use. And oddly enough, in 2015, Amazon still
uses MOBI for its Look Inside feature.

HTML FIXES FOR KINDLE

9

When the Kindle converter processes your book, it
converts it to both MOBI and KF8 formats. Both formats
are included in Amazon’s preview files. But when a
published book is sent to an individual Kindle, Amazon
includes only the format that will work best.

There are some kinds of books—called fixed-format,
including mostly comics and children’s picture books—
that usually don’t work in Mobipocket format at all.
Amazon restricts their sale to certain Kindles. Other
books may include certain formatting that will show up
on KF8-capable Kindles but be missing on others.

The important point here is that, even though KF8
offers advanced formatting, you cannot take advantage
of it if you want your book to be readable on all
Kindles—at least, not without devising fallbacks or
complicated workarounds. Despite the MOBI format
being primitive and outmoded, we’re stuck with it for
some time to come.

This book, then, like From Word to Kindle, takes a
minimalist approach: I stick to HTML that will work on
any Kindle, or at least do no harm—even if that sets a
sharp limit on what can be done.

HTML FIXES FOR KINDLE

10

Update!

Starting in 2015, Amazon has been slowly introducing a
third-generation format for those newer Kindles that can
support it: KFX (with the X pronounced “Ten”), including its
most important visible component, “Enhanced Typesetting.”

Unlike KF8 or even Mobipocket, KFX is based not on
HTML directly but on a translation of it into a proprietary
format. Controlling your HTML, then, can improve your
results as always, but fewer of your instructions may be
accepted without change.

For more information, please see my Publishing Page,
and especially my Publishing Blog.

www.newselfpublishing.com/blog

HTML FIXES FOR KINDLE

11

HTML Export

Working with HTML begins with making sure to export
it correctly. This is especially important when working
with Word, because the default setting will export an
incongruous blend of HTML and proprietary
instructions that are useful only to Word in reimporting
the document. So, let me review the procedure I
described in From Word to Kindle. (And keep in mind
that in Word, unlike in some other apps, you use the
“Save As” command to export to HTML—so here I use
“save as” and “export” synonymously.)

The exact steps will vary according to your version of
Word, but you’ll be saving as “HTML” or “Web Page” or
the like. In the dialog box you get, you then want to
specify the variety that will include the least code. This
may be designated as “Web Page, Filtered” or by an
option like “Save only display info into HTML.”

If in doubt about which option to choose, save in
alternate ways, then choose the one that creates the
smallest file. Also, when saving the best way, you should
not see any auxiliary files with the .xml extension.

•
Word offers a number of “Web Options” related to
HTML export. The defaults for most of these options are
fine—while other options seem to have no effect
anyway!

If you’d like to know, though, the default text
encoding for HTML from Word for Windows is “Western

HTML FIXES FOR KINDLE

12

European (Windows),” also known as Windows-1252.
This is an encoding very close to “Latin-1,” officially
known as ISO 8859-1. For the Mac, the default is
“Unicode (UTF-8).” (Some Windows apps refer to this as
“UTF-8 without BOM.” That’s to distinguish it from
UTF-8 such as written by Microsoft products on
Windows, which still follow the obsolete practice of
starting the file with a byte order mark.)

For the Kindle, either of these encodings is just fine.
The Kindle’s own native encoding is now UTF-8
(without BOM)—but the Kindle converter is more than
ready to translate from one to the other.

By the way, checking the option “Always save Web
pages in the default encoding” will mean that Word
ignores any encoding choice of yours that differs from
the default!

•
If you’ve exported the right way, any excess code still in
Word’s HTML isn’t likely to amount to much, so it’s OK
to ignore it. Even so, you may find it worthwhile to
minimize the Styles info that Word converts and places
at the top of the file.

The most important way to do that is so simple and
effective that I recommend it in all cases: Turn off the
Editing option “Keep track of formatting.” This will
prevent Word from creating a new style every time you
apply direct formatting! That not only trims the code
but may also simplify your code modifications.

The location of this option varies in different
versions of Word. In Word 2010 for Windows, for

HTML FIXES FOR KINDLE

13

example, find it at File > Options > Advanced > Editing
Options. In Word 2011 for Mac, it’s at Word >
Preferences > Authoring and Proofing Tools > Edit.

The other way to minimize Styles info is to delete
styles embedded in the document but not in use. Of
course, before you delete a style, you want to make sure
it really hasn’t been applied to any text. If in doubt, you
can search for the style with Word’s Find and Replace.
Select “Style” from the Format menu in the dialog box,
then choose the style from the list of all available. Make
sure the “Find what” box is empty.

Occasionally, you may see that Word is exporting a
style that you can’t find in the app’s Style lists, even
when viewing “All styles.” If so, try looking in the
Organizer.

HTML FIXES FOR KINDLE

14

HTML Editing

It’s possible to modify HTML either in Word or in a
general text editor like Notepad (Windows) or TextEdit
(Mac). But that can be tricky or else not very efficient.
You’ll find the job easier and more pleasant if you use a
tool designed for the job: a code editor.

Windows has many code editors available, both for
free and for pay. The most popular is the free
Notepad++, available here:

www.notepad-plus-plus.org

The Mac too has a choice of code editors, including
what some consider to be the best HTML editor on any
platform: BBEdit from Bare Bones Software. (BBEdit has
been my own HTML editor since around 1996.) Find it
here:

www.barebones.com

Don’t confuse a code editor with a consumer app for
building Web sites. Most of those apps take control of
your code instead of letting you do what you want.
That’s not likely to work.

•
There are a number of advantages to editing your HTML
with a code editor instead of a word processor or simple
text editor. For one thing, you don’t have to worry about
the invisible characters that word processors insert in

HTML FIXES FOR KINDLE

15

text when used normally—characters that can wreak
havoc in other apps.

A code editor will not only refrain from adding such
characters, it will typically discard them from any text
you paste in from elsewhere. And if any do get through
and cause odd behavior, the code editor should have a
command to seek out and remove them. BBEdit, for
example, lets you “Zap Gremlins.”

A code editor also helps handle the issue of “smart”
or “curly” quotes vs. straight. Smart quotes are your
friend! You nearly always want these in your text,
because they are part of the distinctive look and feel of a
book.

“word”

it’s

On the other hand, you don’t want them in your
HTML code! To avoid error, all quotes in your code must
be straight!

<div class="Level1">

style='text-align:center;'

In both word processors and code editors, smart
quotes can be turned on or off. But by default, they’re on
in a word processor, and off in a code editor—and to
avoid confusion, it’s best to leave them that way. Using

HTML FIXES FOR KINDLE

16

one app just for text and another app just for code helps
keep things straight.

Of course, there can always be times when you want
to insert a straight quote while in your word processor,
or a smart quote while in your code editor. In those
cases, you can change your option briefly, or use a
keyboard equivalent for your system, or use Character
Viewer (on a Mac), or even just cut and paste from the
other app.

•
Another advantage of a code editor is that its search
capabilities will generally be more sophisticated than
those of a word processor or text editor. This will
generally come in the form of a search language called
regular expressions—often shortened to regex or regexp
and other times nicknamed grep, after a command in
one of the first programs that featured it. Though Word
lets you use some of this language if you select “Use
wildcards” in its Find and Replace dialog box, it’s a
watered-down version, and few other word processors
will come close to even that.

Because it uses a specialized language, grep searching
must be specially turned on when you need it—and
turned off when you don’t! Generally, your code editor’s
search dialog box will give you a way to select this.
BBEdit, for example, has a simple “Grep” checkbox. In
Notepad++, you select the “Regular expression” search
mode—and for the grep searches in this book, leave off
the option “. matches newline.”

HTML FIXES FOR KINDLE

17

The language of grep search is extensive and
powerful, and details of it can vary from one app to the
next. The grep operations in this book, though, use
basic, common features, so they’re likely to work almost
anywhere. Still, when using grep, it’s always important
to first test the operation carefully and only on a file you
can easily replace. A small error in grep can wreck an
entire document in less than a second!

Though you don’t need to know the grep language to
run the operations, knowing a bit of it may help you to
understand their basic workings, to guard against errors
in copying, and even to customize them. So, here are
some basics.

• Standard grep is case-sensitive. So, “a” would
normally match a lower-case letter a, while you would
need “A” to match the capital. But this is not true in
some code editors—including BBEdit and Notepad++—
which make grep searches case-insensitive unless you
choose otherwise. Still, if you construct operations in
case-sensitive grep, they will generally work either
way—so that’s what I’ve done here.

• Characters within square brackets represent a
choice of character. For instance, “[ibu]” will match
either i, b, or u. In case-sensitive grep, “[aA]” will let you
match either a lower-case or capital a.

• A hyphen between characters in square brackets
represents a range. So, “[a-zA-Z]” would match any letter
from a to z, either lower-case or capital, while “[0-9]”
would match any digit.

• A simple period will match any character. So, “b.d”
will match bad, bed, bid, b3d, or even b/d. The one

HTML FIXES FOR KINDLE

18

exception is that it normally won’t match a line break—
but your code editor may have an option for it to match
that too. This, for example, is what Notepad++ means by
the option “. matches newline.” If you do see such an
option, make sure it’s off for the operations in this book!

• A caret (^) in front of either a character or a
character set within brackets means not. So, “^i” would
match any character except i; “[^ibu]” would match
anything except i, b, or u; and “[^a-zA-Z0-9]” would
match anything but a letter or digit.

• Characters or bracketed sets may be followed by a
quantifier that specifies the number of matches desired.
For instance, a plus sign means “one or more,” so that
“[0-9]+” would match any number of digits in a row. An
asterisk means “zero or more,” so that “[0-9]*” would
match any number of digits or none at all! A question
mark means “zero or one.”

• By default, grep searches are “greedy.” Instead of
looking for the least number of characters that will
match a pattern, grep normally looks for the most,
stopping only at a line break. This is one reason grep can
be treacherous! One way to prevent a greedy search is to
specify a character the match should not include.
Another is to use a non-greedy quantifier—a normal
quantifier followed by a question mark.

• Since the grep language gives special meaning to
some punctuation marks, you have to set off those
marks specially when you instead mean them as regular
text. You do this by preceding them with a backward
slash (\). For example, “\?” would mean a real question
mark instead of a quantifier.

HTML FIXES FOR KINDLE

19

• On the other hand, a backward slash in front of a
letter means it’s instead meant as a special character. For
instance, “\t” matches a tab character. Letters used this
way are case-sensitive!

• To include part of a matched Find in the Replace,
put parentheses around that part of the Find pattern,
then put its position number in the Replace with a
backward slash in front. As an example, look at the
following.

Find: ([a-zA-Z]+)[0-9]([a-zA-Z]+)
Replace: \1\2

This would look for one or more letters on each side of a
digit and then replace everything with just the letters.

And now you know grep!

HTML FIXES FOR KINDLE

20

HTML Processing

Every single one of the fixes I’ll suggest for your HTML
file can be handled by one or more find-and-replace
operations. If you use a number of them, you’ll find it
best to combine them in a single macro—a custom
command that combines multiple steps. Macro features
are often provided by code editors, or you may be able to
use a standalone macro recorder.

The kind of “master macro” I’m recommending may
take a while to set up, but it takes next to no time to
apply later on. For example, I currently have a “Fix
Kindle” macro in BBEdit that performs over a hundred
find-and-replace operations, processing the HTML of a
medium-size novel in a couple of seconds.

Yes, even starting with HTML I’ve exported from
Word, I can wind up with fairly clean and Kindle-
optimized code in no time at all! With this kind of speed,
I’m seldom tempted to edit text in the HTML file,
instead of back in the original document, where I’m
supposed to. It’s plenty easy to edit the original, run off
a new HTML file, and fix it up. (Sorry, I can’t share my
entire macro with you, because it’s customized for my
own work!)

•
In some apps, you can assemble macros in a special
editor. BBEdit, for example, has its “Text Factories,”
which is what I use for my Fix Kindle macro. After
opening a new Text Factory, you can add, move, and

HTML FIXES FOR KINDLE

21

remove “actions,” defining each one’s operation from a
pull-down menu and employing appropriate options.
(The operation most commonly needed is “Replace All.”)
You can even drag in actions from another Text Factory!
After saving, the Text Factory can be applied to your
active BBEdit document—or to just a selected portion of
it—from the Text menu.

In another kind of macro feature, you simply
“record” the steps as you perform them and then replay
them later. BBEdit offers this too, as an alternative to
Text Factories, by way of the Mac’s AppleScript Editor—
though I have not found this feature particularly
helpful.

Now, obviously, it might be a challenge to flawlessly
record a macro with dozens of steps. Luckily, you don’t
need to. Once you record a macro with a single find-and-
replace operation, you can usually then edit the macro
to add others.

For example, the following line of code from an
AppleScript is for a BBEdit find-and-replace operation
that replaces “Shepherd” with “Shepard” throughout a
document.

replace "Shepherd" using "Shepard" searching in text 1
of text document 1 options {search mode:literal,
starting at top:false, wrap around:true,
backwards:false, case sensitive:false,
match words:false, extend selection:false}

Opening the script and seeing this line in the Mac’s
AppleScript Editor, you could simply copy and paste it

HTML FIXES FOR KINDLE

22

as many times as you wanted, plugging in new Find and
Replace terms each time, and even changing other
settings. In fact, the code you copy and paste doesn’t
even have to come from the same macro. You could
create a number of them independently and then merge
them.

•
When devising your macro, there are several safeguards
you must employ to avoid potential gotchas.

• Code editors typically search forward from the
current cursor position. If you “Replace All,” this may
still act only from the cursor to the end of the file. To
make sure the entire file is processed, you can usually
turn on an option to “Wrap around”—meaning the
operation goes to the end and then continues from the
beginning. If you can’t select such an option, make sure
either that wrapping around is the default or that your
cursor starts at the head of the file.

• Avoid writing your replacements in a way that
causes errors if you happen to run the macro on a file
more than once. For instance, if you replace “1” with
“11,” running the macro twice will give you “1111”! To
prevent this, you might set the find operation to “Match
whole words only.” Or you might include one or more
characters of the HTML code that you know comes
before and/or after, even if it’s just a punctuation mark.
Or you could add a follow-up operation to replace
“1111” with “11.”

• Make sure the text you’re trying to find hasn’t
already been changed by an earlier operation. For

HTML FIXES FOR KINDLE

23

example, if you’ve already changed all exclamation
points to question marks, you’ll get zero results on a
search for “Error!”

• Don’t replace terms that are also found in text. For
example, don’t replace the font name “Georgia” with
“Arial” if you’re writing about the Peach State. Here, too,
try to include in your Find some HTML code from before
or after. Or else modify the phrase in your source
document in some way that will avoid a match—like
replacing a regular space with a nonbreaking one.

I admit it: I’ve committed that last kind of error in
some versions of my own books, including this one.
Very embarrassing!

HTML FIXES FOR KINDLE

24

HTML Basics

It’s much easier to read a language than it is to speak it.
I’m not going to ask you to compose HTML, and really
not even to understand it. But if you can recognize some
of its basic structures, this will help you work with the
code and avoid introducing errors.

So, now that you’ve exported your HTML and
acquired a code editor to process it, let’s take a look
inside.

•
Basic HTML is a collection of tags enclosed by angle
brackets (< >). Most of the tags come in pairs—an
opening tag and a closing one—that enclose text
elements. So, for example, a paragraph of text might be
enclosed by paragraph tags as shown here, with the
closing tag distinguished by a slash.

<p>Very short paragraph.</p>

Other enclosed units you might see include headings
(<h1>, <h2>, and so on), list items (), and divisions,
or “divs” (<div>). What’s a div? Basically a catch-all for
any blocks of text not defined by other tags.

While some tags enclose and define basic units of
text, others can enclose portions of text within those
units and specify formatting. Simple formatting tags
include those for italics (<i>), bolding (), and

HTML FIXES FOR KINDLE

25

underlining (<u>). The span tag () can be
adapted for various purposes.

Not all tags are paired or enclose text. For example,
tags for line breaks (
) and images () have no
closing tags. Tags for anchors—the HTML equivalent of
bookmarks—are paired and may enclose text but don’t
have to.

Opening and standalone tags can include one or
more attributes with associated values. For instance, we
might see the following in a paragraph tag, signifying
that the paragraph should be justified:

<p align="justify">

As you can see from this example, parts of HTML are
pretty easy to figure out, once you take a look.

HTML can also include comments that are meant
only for reference and are ignored by the browser or
ereader. Though they can take up one line or many, they
are always set off the same way at beginning and end:

<!-- This is an HTML comment. -->

You can edit comments as you like, add new ones, or
delete old ones without any effect on your ebook. In
regard to deletion, the one exception is when comment
markers are used to hide modern code from obsolete
browsers—an old trick that Word still uses. You don’t
want to delete the code between the markers! But the
difference in such comments should be easy to spot.

HTML FIXES FOR KINDLE

26

HTML comes in a number of varieties. Besides being
newer or older, versions are distinguished by levels of
strictness—conformance to the ideals of HTML’s
developers. (That doesn’t mean, though, that any
version doesn’t have its rules!)

Word, for example, exports HTML in a version called
HTML 4.01 Transitional—an older version, and the
most lenient one still in common use. On the other end
of the spectrum, Kindle books and other ebooks today
use a very strict kind of HTML called XHTML. That
means that the Kindle converter, as part of its process,
translates Word’s HTML into XHTML. Be glad you don’t
have to do that yourself!

•
In a word processor or page layout app, you can insert
two basic kinds of line breaks: a paragraph mark to end
a paragraph and start a new one, and a manual line
break to force a new line within a paragraph, list, verse,
or such.

When you export to HTML, these line breaks are
converted to tags: <p> for paragraph mark and
 for
manual line break. And those are what mainly
determine forced line breaking in your Web page or
ebook.

But the HTML code you edit also contains its own line
breaks, apart from those tags. The line break character—
often called newline or end-of-line (EOL)—is inserted
with the Return key, just as you would add a paragraph
mark in a word processor; and also like the paragraph
mark, it’s invisible unless you choose to show it. Its job

HTML FIXES FOR KINDLE

27

is to split the code into separate lines for the sake of
convenience in editing, so you’re not dealing with one
massive block of text.

When an app exports HTML, it normally inserts
these line break characters in logical places, like
between units enclosed by paragraph tags, and before or
after line break tags. This helps keep the code organized.
Extra line break characters may be added within units to
keep lines from getting too long.

The important thing to remember about these line
break characters is that they do not produce line breaks
in the Web page or ebook. Only tags can do that. Instead,
line break characters are read in the Web page or ebook
as simple spaces. And if one appears in code beside a real
space, the two spaces will be read together as one. So,
the line break character can be sprinkled liberally
within HTML code without affecting your ebook at all.

In this book, we need to discuss both line break tags
and line break characters—so we’ll have to be careful to
keep them straight. (We’ll also discuss automatic line
breaking—commonly called word wrap—and how to
encourage or discourage breaking at specific spots in
your text.)

•
Nowadays, HTML as a coding language rarely stands
alone. It is almost always accompanied by a companion
language, CSS, which stands for “Cascading Style
Sheets.” CSS is used to specify formatting, with
capabilities that HTML by itself was never designed for.
On the Kindle, support for CSS is very limited in the

HTML FIXES FOR KINDLE

28

older Mobipocket format but is a major feature of the
newer Kindle Format 8.

CSS consists of instructions or declarations that apply
to specific text elements enclosed by the HTML tags.
One place these declarations can appear is within an
opening tag itself. For example, you might see a
paragraph tag like this:

<p style="text-align: justify; margin-bottom: 12pt;">

As you can see, the declarations are together
formatted as the value of an HTML attribute called
“style,” in that way integrating with the HTML. The
declarations themselves consist of properties and their
associated values. The declarations here tell the browser
or ereader that the paragraph should be justified, with
12 points of blank space coming after.

Placing CSS in the tag is something like applying
formatting directly to a paragraph in a word processor.
But as in a word processor, you can also apply multiple
formatting instructions you’ve grouped under a joint
name. In a word processor, we’d talk about assigning a
style. In CSS, we call it a class.

For example, the following might appear in the
HTML document’s head—a section appearing before
your text, which includes information and instructions
relating to the document. This example sets up a
paragraph class named “plain,” using the same
properties we previously specified within the tag.
Again, the CSS is integrated with the HTML, this time by
enclosing the code within HTML style tags.

HTML FIXES FOR KINDLE

29

<style type="text/css">
p.plain {text-align: justify; margin-bottom: 12pt;}
</style>

With this code in the document head, all we need to
do to assign the class to a paragraph is to place a class
attribute in the opening paragraph tag.

<p class="plain">

Much cleaner!
CSS declarations placed in the document head are

said to be embedded, while declarations placed within
tags are inline. Generally, when a word processor
exports HTML, both inline and embedded CSS will be
included. Your source document’s style definitions will
translate to embedded CSS, while direct formatting will
translate to inline.

There is one more kind of placement for CSS, and
that’s external. CSS declarations are often collected in a
separate document called a stylesheet. In the original
HTML document, you would still see class assignments
and inline CSS for direct formatting. But in place of
embedded CSS, you would see a line like the following,
linking the document to the stylesheet file:

<link rel="stylesheet" type="text/css"
href="stylesheet.css">

HTML FIXES FOR KINDLE

30

In your exported HTML, you’re unlikely to see this
arrangement unless you’re working with dedicated
ebook software. Word processors and text editors in
general won’t write separate stylesheets. But you will
see them if you “unpack” Kindle previews for
inspection—a procedure I’ll discuss later.

Like HTML, CSS allows comments used only for
reference. Here, though, the markers are different.

/* This is a CSS comment. */

With these comments too, you’re free to edit, add, or
delete as you like.

Despite CSS being a language of its own, it’s so
intertwined with HTML that we generally use that term
to refer to them together. So, in this book, I’ll refer to CSS
separately only when that’s all I’m talking about.

•
Different versions of HTML call for slightly different
ways to write code, while even a single version can
allow latitude in how it’s written. Often there’s a “best”
way to write it, but other ways are tolerated. And
sometimes format details are simply left to the coder’s
preference.

When constructing find-and-replace operations, you
need to be conscious of such possible variations so you
can accurately follow the style of the HTML you’re
working on. Otherwise, your searches may miss
matches, or you may introduce inconsistencies or even
errors.

HTML FIXES FOR KINDLE

31

In the find-and-replace examples in this book, I try to
show you exactly the way the code will appear in
Word’s exported HTML. But if your code comes from
another app, there will likely be differences.

Here are some variations to watch out for.
• Best practice in HTML is to keep all tags, attributes,

and values in lower case (unless a value includes text
that may be displayed). Still, at least some versions of
HTML allow caps anywhere.

<p> or <P>

• As I said, some HTML tags are not paired to be
opened and closed. But in XHTML—the stricter variant
of HTML—the idea of a tag not being closed is
intolerable. So, all tags that are normally standalone are
either paired with closing tags or, more commonly, are
closed within the same tag, by ending it with a slash.
Like so:

 or

Note also that the slash may or may not be preceded by
a space!

• In word processors, we’re used to inserting and
viewing a line break at the end of a line. But the HTML
line break tag (
) actually starts a new line in the
document—and at the beginning of the corresponding
line of code is where it logically should be positioned.
Still, HTML tolerates either placement—and in fact, any
placement at all.

HTML FIXES FOR KINDLE

32

• In very old styles of HTML, you might see opening
paragraph tags without closing ones—and these might
be placed either at the beginning of each paragraph or at
the end! Not a good practice, but still acceptable in some
HTML versions.

• HTML attributes are best enclosed by double
quotes—straight, of course. But single quotes are also
accepted, and in most cases, even no quotes.

<p align="justify"> or
<p align='justify'> or
<p align=justify>

Word, for example, prefers to use no quotes, with single
quotes as a second choice.

• In an HTML document, not all characters are
allowed within your text. This can be either because the
characters are reserved for HTML code or because
they’re not supported by the HTML document’s
assigned encoding—the way its text characters are
generated from raw computer data.

To get around this, HTML can represent a number of
punctuation marks and special characters as entities,
derived from abbreviations or assigned numbers. So,
you may see substitutes like these:

< or < (<, less-than sign)
" or " (", straight double quotation mark)
 or (nonbreaking space)
é or é (é, small e with acute accent)

HTML FIXES FOR KINDLE

33

© or © (©, copyright mark)

Note that entities always start with an ampersand (&)
and end in a semicolon (;), while numbers are always
preceded by a number sign (#).

Actually, with the UTF-8 encoding most commonly
used in HTML today, you’re not likely to find characters
the encoding doesn’t allow. But some HTML—including
the default export from Word for Windows—is still
written in one of the older, narrower encodings. And
some HTML in UTF-8—including the default export
from Word for the Mac—uses entities anyway as a
carryover from the past.

• With CSS, there are two basic styles of writing the
code. One is a “loose” style, inserting spaces after
punctuation, as in normal text.

style="margin-top: 0; font-family: Caecilia;"

The other is a “tight” style, with spaces left out.

style="margin-top:0;font-family:Caecilia;"

Also, in some CSS, you’ll find a semicolon at the end
of each declaration, including the last one in a series, as
shown above. In other CSS, you’ll see the semicolon used
only between declarations—not after the final one—as
shown below.

style="margin-top: 0; font-family: Caecilia"

HTML FIXES FOR KINDLE

34

• Most HTML attributes have default values. When no
different value is desired, an attribute can be either
included in the code or just left out. (As we’ll see,
though, leaving it out can cause a problem when the
default in HTML doesn’t match the one on Kindle!)

•
You don’t need to become an HTML expert to refine the
code for your Kindle book—but the more you know of it,
the easier you may find tracking down problems and
adjusting things to your liking. If you’d like to further
explore HTML, I suggest getting a copy of HTML5 and
CSS3, by Elizabeth Castro and Bruce Hyslop.

HTML FIXES FOR KINDLE

35

HTML Checking

When you’re fixing HTML, one thing you want to make
sure is that you don’t introduce errors. Even a tiny
mistake in spelling or punctuation in your code can
make your entire document useless. And some such
errors can be nearly impossible to find just by looking.

To check for errors, you need an HTML syntax
checker. If you’re lucky, your code editor will have one
built in, as BBEdit does. If it doesn’t, it might still be able
to host a third-party plug-in. Farther afield, your Web
browser may have syntax checking you can enable,
offered as an advanced tool for HTML developers. And if
all else fails, you can upload your code to a site like the
W3C’s Markup Validation Service.

validator.w3.org

Of course, the syntax checker may find errors other
than ones you make, as your exported HTML may
contain some to begin with. Generally these aren’t
crucial, and in fact, the Kindle converter seems designed
to overlook common errors, at least in Word’s HTML.
Still, you’ll want to correct any existing errors to keep
them from obscuring or compounding your own.

•
The syntax checker works by matching your HTML
against the rules for specific HTML versions. That

HTML FIXES FOR KINDLE

36

means it must first know which HTML version you’re
using!

That version information is supposed to appear at
the very beginning of your HTML document in what’s
called a doctype declaration, or just DOCTYPE (all caps),
for short. The one for HTML5, the current version of
HTML, is quite simple, looking like the following. (Note
that we’re not sticking to lower case, this time.)

<!DOCTYPE html>

Older DOCTYPEs, though, are much longer and more
complex. Here’s the one for HTML 4.01 Transitional, the
version exported by Word and used by many older Web
sites.

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

The problem is, a doctype declaration doesn’t always
make it into the document. Word, for example, is one
app that omits it from exported HTML. Ironically, this
can make a syntax checker spew out hundreds or
thousands of false alarms as it checks by the wrong set
of rules!

Though some checkers let you select the version for
checking from a menu, a DOCTYPE makes the selection
automatic. So, if it’s missing, one of your first steps in
processing your HTML should be to insert it.

HTML FIXES FOR KINDLE

37

But what if you don’t know which version of HTML
your document uses? You’ll have to try different ones,
then see which of them your syntax checker seems to
approve by reporting the fewest errors.

If your checker doesn’t have a menu for version
choice, testing for a version means first inserting its
DOCTYPE in the document. Your code editor may have a
command that does this for you. If not, you can type it
in or else cut and paste from an authoritative source.
Place it at the very start of your document before
anything else.

Here are two sample lists of older available
DOCTYPEs:

www.w3.org/QA/2002/04/valid-dtd-list.html

www.htmlhelp.com/tools/validator/doctype.html

Chances are, though, that your mystery version is
HTML 4.01 Transitional, the version exported by Word.
That’s because it’s still the most common type of
HTML—and because anyone using a stricter version
would be unlikely to leave out the declaration! So, try
that one first.

•
Of course, after figuring out which DOCTYPE you need,
you won’t want to insert it manually each time you
export HTML. So, this would be one of the first
processing steps in your master macro.

HTML FIXES FOR KINDLE

38

As I said, the DOCTYPE appears at the very beginning
of the document, which places it just before the opening
HTML document tag (<html>). Adding it there would be
easy with a simple find-and-replace. Here’s what it
would look like with an HTML5 DOCTYPE.

Find: <html
Replace: <!DOCTYPE html><html

The only problem is, we aim to write macros that can
safely be repeated. And every time you repeat this one, it
will add another copy of the DOCTYPE! To prevent that,
you can precede this find-and-replace with another one
that looks for the exact DOCTYPE you’re about to
insert—including any embedded line breaks or tabs—
and removes it by replacing with nothing. That frees
you to insert the DOCTYPE again.

The alternative is to substitute a grep operation that
will work whether or not you’ve already inserted the
DOCTYPE. For example, the following Find will select
the HTML tag plus any DOCTYPE inserted previously, as
long as the DOCTYPE does not include any line break.
(That’s a period in front, not a flyspeck.) The Replace
would not change.

Find: .*<html

•
Considering the reputation of Word’s HTML export, as
well as how long ago it was introduced, it produces

HTML FIXES FOR KINDLE

39

surprisingly few outright errors in code. In fact, aside
from the omission of the DOCTYPE for HTML 4.01
Transitional, there’s only one error you’re likely to see
from an all-text Word document: Contrary to what’s
required by this older version of HTML, there’s an
attribute missing from the style tag found in the HTML
document head. You can fix it with this:

Find: <style>
Replace: <style type="text/css">

You might also want to remove the attributes Word
adds to the opening body tag—the one that marks the
beginning of document text. Though they’re proper for
this version of HTML and no problem for Kindle, you
shouldn’t need them, and some may generate errors if
you later convert your HTML or MOBI file to EPUB.
They’re easy enough to remove with a little grep.

Find: <body[^>]*>
Replace: <body>

Word can make other minor errors in code—
especially in its image tags—but I’ll discuss those as we
go along.

HTML FIXES FOR KINDLE

40

HTML Cleanup

One function of a word processor that we usually take
for granted is word wrap, which automatically breaks a
line and begins a new one whenever text reaches the
right margin. Without that function, text lines would
simply run off the right side of your screen, stopping
only when they got to a paragraph mark.

In a code editor, though, word wrap might be turned
off by default, and in a primitive text editor, it might not
even be offered! So, when a word processor exports to
HTML, it might—for your convenience—add line break
characters not only for organization but also wherever
needed to keep lines from getting too long. The
characters might be inserted after spaces, or even in
place of them.

As I explained before, these line break characters—
unlike the line break tag (
)—are there only to make
code editing easier. On a Kindle reader, each such
character appears as a simple space, and if it’s next to a
real space, the two are merged into one. So, the insertion
of line break characters into HTML code makes no
difference in how the book is displayed.

But when it comes to find-and-replace in your code
editor, it’s a different story. A line break character
coming before or in place of a space can throw off your
search by making you miss a match! So, before you start
fixing HTML in your code editor, you have to make sure
there are no line break characters in positions where
they can cause trouble.

HTML FIXES FOR KINDLE

41

•
Even before you start removing line breaks, make sure
word wrap is turned on in your code editor, so you don’t
wind up with text extending far off your screen. In
BBEdit, for example, do that with View > Text Display >
Soft Wrap Text. (Don’t turn on Hard Wrap, which will
insert even more line break characters!) In Notepad++,
it’s View > Word Wrap.

You should also make sure you can see whatever line
break characters are there. If your code editor does not
always show you such characters, it will at least offer
the option. In BBEdit, you choose it with View > Text
Display > Show Invisibles. For Notepad++, it’s View >
Show Symbol > Show End of Line (or Show All
Characters).

Line break characters themselves have no visual
properties, so what appears on screen will depend on
how the code editor represents them—and also on what’s
actually represented. In BBEdit, for example, you’ll see a
not sign (¬) to stand for the character that’s really used:
line feed (LF), the standard on OS X and Unix. (Earlier
versions of BBEdit instead used the carriage return, the
standard line break character in Mac OS versions prior
to OS X.)

On Windows, the standard line break is carriage
return plus line feed (CR+LF, or just CRLF). That’s what
you’ll see, for example, if you export HTML from Word
for Windows and open it in Notepad++. There it will
show up as two small icons with the CR and LF initials.
As you might figure, this line break is actually a pair of

HTML FIXES FOR KINDLE

42

characters—but since they’re normally handled
together, we’ll keep speaking of them as a single one.

In fact, I may get even lazier, sometimes speaking of
line breaks when I mean line break characters. To keep
things straight, though, I’ll always say line break tag
when that’s what I mean instead.

•
A code editor may have a command that removes
unneeded line break characters automatically. In
BBEdit, for example, the Remove Line Breaks command
replaces all such characters with spaces—except where
two line breaks together produce a blank line. This
exception preserves separation between paragraphs or
other code blocks.

But even with such built-in exceptions, broad
commands of this type may also remove line breaks
needed for code readability, especially in the HTML
document head. They can even introduce errors—such
as replacing a line break character with a space even if it
comes after a line break tag (
). That replacement
will make the new line start with a space! (The error
wouldn’t be entirely the code editor’s fault, though.
Logically, the line break character should go before that
tag, not after.)

You can fix some such problems afterward with
find-and-replace—or avoid many in the first place by
restricting the operation to a selected section or
sections. But you can do even better by substituting
your own set of find-and-replace operations.

Here’s the procedure:

HTML FIXES FOR KINDLE

43

1. Figure out how you need to represent a line break
in your code editor’s find-and-replace dialog. For BBEdit,
the search code is always “\n”, for a line feed. For
Notepad++, it’s normally “\r\n”, for a carriage return
plus line feed—and to use that code, you need to turn on
Extended search mode!

2. Choose a placeholder made of characters in a
pattern that would otherwise never appear—“zxy”,
“@#$”, or such.

3. For double line breaks—used to create a blank
line—replace each break with your placeholder. With
BBEdit, it might look like this:

Find: \n\n
Replace: zxyzxy

For Notepad++ (in Extended search mode, as I noted):

Find: \r\n\r\n
Replace: zxyzxy

4. Make the same replacement for any specific kinds
of single line breaks you’d like to later restore in code.
These would be line breaks that fall before or after
certain symbols or tags. (But not after commas, colons,
or semicolons!)

For instance, in HTML from Word, you will likely
want to restore line breaks after the line break tag
(
). The replacement in BBEdit would look like . . .

HTML FIXES FOR KINDLE

44

No, wait. While we’re at it, let’s shift them into reverse
positions, as they should be.

Find:
\n
Replace: zxy

Or for Notepad++:

Find:
\r\n
Replace: zxy

Then of course, we need to look out for line breaks in
this new position as well, in case the file gets
reprocessed. For BBEdit:

Find: \n

Replace: zxy

And for Notepad++:

Find: \r\n

Replace: zxy

Other line breaks you might want to restore later in
Word’s HTML are:

Before tab character (“\t” in BBEdit or Notepad++)
Before @
After <!--
After */

HTML FIXES FOR KINDLE

45

After }
Between > and <

5. OK, here’s the big one: Replace each remaining line
break with a space.

6. In case the previous step left any double spaces,
replace each pair with a single space.

At this point, you should have no line break
characters left in the file. With word wrap on, all you
should see is a solid block of text. (If you see only a
single line, then word wrap is off!)

7. Finally, replace each of your placeholders with a
single line break. For our BBEdit example:

Find: zxy
Replace: \n

For Notepad++:

Find: zxy
Replace: \r\n

•
Actually, in the instructions just given, I cheated a little
by putting off discussing one of the trickier aspects of
removing line breaks in code. This has to do with the
two different styles of writing CSS code, which I
described earlier: “loose,” with spaces after punctuation,
as in the first example below; and “tight,” without
spaces, as in the second.

HTML FIXES FOR KINDLE

46

style="margin-top: 0; font-family: Caecilia;"

style="margin-top:0;font-family:Caecilia;"

Again, each style is proper CSS, but the issue here is
consistency for the sake of search. In Word’s HTML, for
example, CSS is written tightly—but even without the
spaces found in loose CSS, Word may insert a line break
character after a CSS colon or semicolon. The result
might look something like the following, with the
pilcrow (paragraph mark) standing in for your code
editor’s representation of a line break character.

style="margin-top:0;¶
font-family:Caecilia;"

If you replace that line break with a space, you’re
placing it where a tight style wouldn’t have one. That
creates a variation—a combination of tight and loose
styles—that a search could miss.

style="margin-top:0; font-family:Caecilia;"

So, if you find yourself dealing with tight CSS like
Word’s, any line breaks after colons or semicolons in
that code will have to be handled separately. You’ll have
to remove the breaks without adding spaces—and you’ll
have to do it before replacing other line breaks.

Of course, if you never use colons or semicolons in
your text, you can handle the ones in CSS with a couple
of simple find-and-replace operations. But if you do use

HTML FIXES FOR KINDLE

47

them in text, the line breaks following those marks
would need to be replaced by spaces.

To treat the punctuation marks one way in CSS and
another in text, we’ll have to turn to grep. The following
find-and-replace operation will remove all line breaks
after colons and semicolons in tight CSS without adding
spaces. At the same time, it will ignore those same
punctuation marks in your text. (This assumes your
code editor lets you search for line breaks with grep!)

First, how it would look in BBEdit:

Find: ([=;])\n?(['"]?[a-z\-]+:)\n?([^/])
Replace: \1\2\3

And now the Find for Notepad++, substituting the
default Windows line break characters. The Replace is
the same.

Find: ([=;])\r?\n?(['"]?[a-z\-]+:)\r?\n?([^/])

In case it’s not clear, the two characters in the second
pair of square brackets in both Finds are a single quote
(') and a double quote ("), both straight (not “curly”),
with nothing between the two.

This operation looks for CSS property names—which
consist of single words or hyphenated phrases in lower
case—in the midst of punctuation patterns found only
in CSS. Then it removes any line breaks in the area. But
don’t apply it to loose CSS with line breaks, or you could
wind up with the same problem of inconsistency in
reverse!

HTML FIXES FOR KINDLE

48

•
Beyond cleaning up line breaks, you should standardize
spaces in relation to closing tags. This too will help in
later operations.

First search for spaces placed before closing tags for
font styling—closing tags like for italics (</i>), bold
(), underline (</u>), and span (). Then
move the tags in front of the spaces. This makes sure the
tags always abut characters they’re actually modifying,
minus the spaces that follow.

After that—not before!—search for spaces placed
before closing tags for text elements—closing tags like
for paragraph (</p>), list item (), div (</div>), and
heading (</h1>, </h2>, and so on). Those spaces should
just be removed.

•
Though Word, when handled properly, doesn’t interject
nearly as much extraneous code as many claim, it does
add more than necessary to the beginning of its HTML.
While not enough to really be a problem, it can be
irritating when you’re examining your file and trying to
scroll to the beginning of your text.

The biggest culprit is a collection of font data that
serves no purpose in your Kindle book but that in some
files can be extensive. You’ll find it between these two
comment lines:

/* Font Definitions */
/* Style Definitions */

HTML FIXES FOR KINDLE

49

You can delete it all manually, but you can also do it
automatically with grep. Use the following Find to
select it all, then replace with nothing—in other words,
replace with the Replace box empty. That’s a regular
space before and after the phrase “Font Definitions.”

Find: /* Font Definitions */[^/]*

Some earlier Word versions—such as Word 2004 for
Mac—have another annoying and generally useless
habit: After a closing tag for text formatting—for
instance, for italics or a change in typeface—they insert
a pair of span tags specifying a return to “normal.”

Though these tags may never interfere with your
operations, you might prefer to clear them out. If you
see any, you can use this grep on them:

Find:]+:normal'>([^<]*)
Replace: \1

But I did say generally useless, because there’s one
case in which you’ll need to leave these spans in place.
Within an extended passage in italics, it’s common to
denote emphasis on some words by removing italics. In
Word’s HTML, this is rendered as a “normal” span. If
you take it out, you’ll lose the emphasis.

Earlier Word versions might also have inserted large
amounts of numbered “OLE_LINK” bookmarks in your
source document. These markers were meant to support
functions that were seldom used and are entirely
irrelevant to Kindle books. Besides causing clutter in

HTML FIXES FOR KINDLE

50

your HTML, they are often exported incorrectly,
creating errors—so you should definitely get rid of
them. Just delete them all in Word’s Insert Bookmarks
dialog.

Note that the document itself doesn’t have to have
come from an older Word version to contain these links.
Any document can be infected from part of it having
been copied and pasted from an older one.

•
Though these cleanup methods should make your
HTML ready for most other find-and-replace operations,
I can’t guarantee complete safety. You’ll have to keep an
eye on your own code and your own operations to spot
special cases. Be prepared to tinker to get everything
perfect.

HTML FIXES FOR KINDLE

51

HTML Testing

While working out fixes for your HTML, you’ll probably
want to test your results more often than the typical
Kindle author would. So, forget the online previewer at
Amazon KDP and download Amazon’s Kindle Previewer
for the desktop. You can find it here:

www.amazon.com/kindleformat/kindlepreviewer

Not only is the desktop previewer faster than the
online one, but it can also convert your HTML to Kindle
format right there on your computer, by way of the
Kindle converter it also installs. All you need do is open
or drag in your HTML file, and the Previewer will handle
the rest.

The conversion provided by the Kindle Previewer is
not quite as good as the one you get at Amazon KDP.
Specifically, it will be missing your cover, as well as
Go To menu items for the book’s “beginning” and table
of contents. Still, joint converting and previewing in the
Previewer lets you run quick and mostly accurate tests
of formatting without the need to visit Amazon KDP
and wait for processing.

Another advantage of converting in the Previewer is
that you get access to a log of “Compilation Details,”
including warnings and error messages. These can be
valuable in pinpointing errors in your file or in just
studying how the converter operates. Ideally, the only
actual warning you want to see there is “Cover not

HTML FIXES FOR KINDLE

52

specified.” (And that’s when you plan to upload your
cover to Amazon KDP separately.)

Of course, for best testing, you’ll want to take the file
that Previewer has converted and view it on actual
Kindles. You can start with the free desktop Kindles for
Windows or Mac, available here:

www.amazon.com/kindleapps

Beyond that, hardware Kindles are now cheap
enough that you may find it worthwhile to collect a few
just for testing. For my own tests while first writing this
book, I had one Kindle from each major family—a latest-
generation basic Kindle, a Kindle Paperwhite, and a
7-inch Kindle Fire HD—plus an iPad with the Kindle
app.

Files from the Kindle Previewer can quickly be sent
to any or all of these Kindles with Amazon’s Send to
Kindle app. You can get yours here:

www.amazon.com/sendtokindle

Note that preview files sent this way will be treated by
Kindles as Documents, not Books.

•
One challenge in polishing your HTML is that it’s not
your HTML that will wind up in the Kindle book—it’s
Amazon’s translation of your HTML! And as Amazon
continues to develop its Kindle tools, it changes the way
it makes that translation.

HTML FIXES FOR KINDLE

53

If you’re comfortable enough with HTML, there’s one
tool that’s particularly helpful in facing this challenge:
KindleUnpack. It takes apart a preview book package
and lets you look at its component files. You can
download it from the first post in this forum thread:

www.mobileread.com/forums/showthread.php?t=61986

KindleUnpack requires a version of the Python
software language to be installed on your computer.
Macs already have it. For Windows, you can download
free versions from either of these locations, among
others:

www.python.org/download

www.activestate.com/activepython/downloads

The latest version of either Python 2 or Python 3 should
work with KindleUnpack.

What you’ll see after unpacking includes the source
files you fed the converter plus files and folders for two
different versions of your Kindle book—the Kindle’s old
Mobipocket format (here called “mobi7”) and the newer
Kindle Format 8 (here called “mobi8”). Each Kindle
version will have its own HTML file or files for the book
contents, as well as its own set of image files.

You can now see exactly how the Kindle converter
handles the HTML you feed it. And you can go back and
see how changes in your HTML generate different
results in Amazon’s.

HTML FIXES FOR KINDLE

54

•
Even if you get everything right in your preview, that
doesn’t mean it will be right in the finished book.
Amazon KDP staff, for example, have a bad habit of
moving a book’s navigation anchors before releasing it.

What’s more, Amazon reserves the right to reprocess
your files anytime after publication without letting you
know—and they actually do that. This is so your books
can take advantage of improvements to the Kindle
platform, but it ignores the possibility of unexpected
results.

Sadly, there’s no HTML to stop Amazon from
messing with your books!

•
Previewing for Kindle is a large topic in itself. To read
much more about it, see my article at

www.newselfpublishing.com/ProofingKindle.html

HTML FIXES FOR KINDLE

55

HTML and Apps

Though most people still use word processors like Word
to compose their books for Kindle, there are now a
number of dedicated ebook apps and other apps that
feature ebook authoring. These include Scrivener, Jutoh,
Vellum, and Amazon’s own Kindle Comic Creator and
Kindle Kids’ Book Creator. Instead of giving you HTML
files, these apps provide files in Kindle book format.

But that doesn’t mean the apps actually don’t
produce HTML files. What it does mean is that they send
those working files directly to the Kindle converter that
must also be installed on your computer. So, there are
HTML files, you just normally don’t see them.

It’s possible, though, to tinker with the HTML from
these apps just as you would with HTML from a word
processor. Some apps, like Jutoh, allow you to save their
working files for inspection and editing. But if your app
doesn’t, you can still access them.

First you need to break open the final Kindle book file
with KindleUnpack, the utility I discussed in my section
on HTML testing. You will then see a file named
kindlegensrc.zip (for “Kindlegen Source”). After
unzipping this file—usually with a double click—you’ll
find the files your app sent to the converter, and you can
edit them like any others.

After editing the working files, you can rezip these
files alone and submit them to Amazon KDP. Amazon
doesn’t need anything else from the Kindle book you
generated.

2
HTML Fixes

HTML FIXES FOR KINDLE

58

Fixes for Fonts

In From Word to Kindle, I discussed Georgia as the best
font to specify in the source document for a Kindle
book. But specifying any primary font at all can cause
problems. For example, it can prevent the Kindle user
from changing the font as desired. On some Kindles, it
can even cause a switch to a sans-serif font. So, the
better course is to not specify at all.

Unfortunately, there’s no way not to in a word
processor or page layout app—so to avoid specifying,
you have to remove some code from the exported HTML.
But that’s easy to do. For example, assuming your font is
Georgia, the find-and-replace in Word’s HTML could
look like the following. (The first Find example is
Windows, the second is Mac.)

Find: font-family:"Georgia","serif" or
Find: font-family:Georgia
Replace: font-family:

In other words, you can just get rid of the font name
or names, along with any double quotes immediately
surrounding them and any comma between. The
empty-value declaration that remains will be the same
as no declaration. This is simpler than trying to remove
the declaration entirely, since the surrounding
punctuation can vary.

HTML FIXES FOR KINDLE

59

•
With Word, there’s one font you might have to give
special attention, even if you haven’t specified it in your
document: Times New Roman. That’s because it’s
Word’s underlying default font, and Word may specify
it in HTML wherever you haven’t asked for a different
one. This might in some cases happen, for instance, if
you don’t specify a font for the Hyperlink and
FollowedHyperlink character styles.

For this too, the best plan is to remove the
specification, just as you would for your primary font.
Here are the Finds, for Windows and Mac respectively.

Find: font-family:"Times New Roman","serif" or
Find: font-family:"Times New Roman"

•
Though it’s best not to specify your primary font, you
may well want to specify a secondary one for contrast or
special use. As I said in From Word to Kindle, the best
choice for this is generally the sans-serif font Helvetica,
both for its characteristics and for its wide availability
on Kindles. Arial will work in most of the same cases,
since it’s nearly identical and since many Kindles can
swap these two fonts as needed. To use one or the other,
you could simply leave the specification for it in Word’s
HTML export.

HTML FIXES FOR KINDLE

60

But to increase your chances of getting a font you
want, you could add alternate choices to your HTML. So,
instead of leaving a specification of Helvetica or Arial,
you would replace it by listing Helvetica and Arial and
the font family “sans-serif,” in that descending order of
preference. In the HTML of Word for Mac, for example,
it would look like this:

Find: font-family:Helvetica
Replace: font-family:Helvetica,Arial,sans-serif

Word for Windows, on the other hand, already
includes “sans-serif” as an alternate, so the find-and-
replace would look like this.

Find: font-family:"Helvetica","sans-serif"
Replace: font-family:"Helvetica","Arial","sans-serif"

In the same way, you can increase the odds of getting
a monospace font by listing together Courier, Courier
New, and “monospace.” Or a narrower font by listing
Times, Times New Roman, and “serif.”

Note that font names like Courier New and Times
New Roman—multi-word names with spaces
between—must be enclosed by quotes, regardless of
whether you’re enclosing other font names. And those
quotes must be single, if the declaration is part of a
string surrounded by double quotes.

HTML FIXES FOR KINDLE

61

•
Word processors and page layout apps normally specify
sizes and distances in absolute units like inches or
centimeters or points—a point being 1/72 inch. And
that’s what gets exported to HTML. When expressed
this way, older Kindles need you to stick to the common
font sizes of 10, 12, 14, 18, and 24, with 12 as normal
body type. Any in-between size gets rounded.

But the point size of Kindle text characters can vary
according to the device and user settings. So, nowadays,
it’s much better to give the Kindle relative
measurements.

In typography, relative measurements are often
expressed in terms of the em. For print, an em equals the
point size of the font in use. So, if the font size is
12-point, an em equals 12 points, or one-sixth inch. If
the font size is 18-point, the em is 18 points, or a quarter
inch. (The em got its name from the width of a capital
letter M, which traditionally had a width equaling the
point size.)

In ebook typography, though, the em is defined a bit
differently. It is instead the size of normal body type, as
set by either the device user or the book itself. So, if
normal body type is currently set to 12-point, then
18-point type is 1.5 ems.

With this modified definition, all differences in font
size can be specified in ems instead of points. And that’s
what the Kindle favors.

HTML FIXES FOR KINDLE

62

Font size specified in points will still work fine on
many Kindles, which will simply scale them as needed
to appear normal. But some newer Kindles will stick to
the actual point sizes while equating points to pixels. As
a result, the type will be tiny until the Kindle user
adjusts it. Other Kindles—at least in their buggy
emulations in Amazon’s previewers—may show the
same type as oversize!

For best handling, then, convert the point-based font
sizes in your CSS to ems. Here’s what the conversion
would look like for 14-point type in Word’s HTML. (Note
the decimal point and following zero that Word
includes in the point size.)

Find: font-size:14.0pt
Replace: font-size:1.2em

The conversions for all of the Kindle’s favored point
sizes would be:

10 points ~ .8 em
12 points ~ 1 em
14 points ~ 1.2 em
18 points ~ 1.5 em
24 points ~ 2 em

Another way to express relative measurements for
the Kindle is percentages. For font size, this would again

HTML FIXES FOR KINDLE

63

be based on the size of your normal body text. For
14-point type in Word’s HTML:

Find: font-size:14.0pt
Replace: font-size:120%

And all the conversions together:

10 points ~ 80%
12 points ~ 100%
14 points ~ 120%
18 points ~ 150%
24 points ~ 200%

One tricky thing about relative measurements is that
they’re cumulative. If you apply two different
measurements to the same text, the final measurement
is the two of them multiplied against each other.

For example, say that you set a paragraph’s text to
18-point by way of a relative measurement of 1.5 em or
150%. And then say you want to set a single word
within that paragraph to 24-point. If you try specifying
that as 2 em or 200%, as you normally would, you wind
up with a final measurement of 3 em (1.5 ! 2) or 300%
(150% ! 200%), for a point size of 36—half again as
large as you want! To avoid surprises, then, limit
yourself to one font size per paragraph.

Note that if you change any font sizes in your Kindle
book to relative measurements, you must change them

HTML FIXES FOR KINDLE

64

all. Otherwise they’ll be grossly out of proportion to
each other on some Kindles.

•
An odd complaint you sometimes read in Kindle book
reviews is that some or all of a book’s text is missing,
leaving blank pages. You might figure that the
customer’s file was corrupt on download, but that’s not
the case. What has happened is that text color in the
book was specified as black, while the customer had
chosen to view text on a black background. Black text on
black simply vanishes.

In HTML, black is the default color for text—so
unless a different color is needed, it’s usually not
specified at all. Word, for instance, will not specify text
color in its exported HTML as long as font color in the
source document is set to the default “Automatic.” This
lack of specification allows the Kindle to match text
color to viewing mode—for example, white text on a
black background.

But sometimes font color in a source document is
accidentally or purposely set specifically to black; or text
that is set that way is pasted in from another source; or
an app might always specify text color in its exported
HTML. You might not notice this, or you might just not
see any reason to change it. On your computer screen or
in print, the text looks exactly the same. And when
you’re testing on your Kindle, you might never think to
try a black background. (Tip: You should.)

HTML FIXES FOR KINDLE

65

It’s a good idea, then, to add a step to your processing
that checks for the black specification and removes it.
First you have to see how your exporting app would
specify it, then simply remove the color designation.
Here’s how it would look in Word.

Find: color:black
Replace: color:

Leaving the specification empty is the same as not
specifying.

If you’re using a different app, find the relevant code
by first setting font color to black in your source
document, then searching for “black” in your exported
HTML.

HTML FIXES FOR KINDLE

66

Fixes for Paragraphs

A word processor or page layout app may omit a setting
from its exported HTML when the value is zero or
another default. That’s perfectly acceptable in HTML.
The problem is that the Kindle may then assume a
different value entirely.

If, for example, you set a zero first-line paragraph
indent in Word, the exported HTML won’t include that
instruction, because it’s already the HTML default. So,
the Kindle won’t get the message and will then use its
own default—which for older Kindles is to indent!

In From Word to Kindle, the workaround I offer for
this is to set a first-line indent in Word of .01 inch or
centimeter. This forces Word to write the instruction to
HTML, while the indent is small enough not to be
noticed. Though that solution works fine, a quick find-
and-replace can change the HTML to what it really
should be. For the measurement in inches:

Find: text-indent:.7pt;
Replace: text-indent:0;

Word uses a similar trick of its own to eliminate
space after a paragraph, setting it to .0001 point. You
can easily clean that up, too:

Find: margin-bottom:.0001pt;
Replace: margin-bottom:0;

HTML FIXES FOR KINDLE

67

•
A similar problem may arise when you want left
alignment for your text. Here again, the instruction may
be left out of exported HTML, because it is already the
default. But without the instruction, any Kindle will
justify—add space within lines to produce a smooth
right margin.

When Kindles justify without hyphenating, this will
make any text look bad. And even when Kindles do
hyphenate, as the newest can do, the text won’t look
great. That’s because they use a primitive form of
justification that can only expand spaces between
words, never contract.

From Word to Kindle provides a trick that blocks
justification, but blocking is much easier to handle in
HTML. In your source document, make sure you justify
any text you want left-aligned—in other words, make it
the opposite of how you want it to wind up. That
guarantees that an instruction will be written to HTML.
Then change the instruction in code with a find-and-
replace, such as this one for HTML exported from Word:

Find: text-align:justify
Replace: text-align:left

Having provided this fix, I must also warn you that
Amazon does not like forced left alignment in Kindle
books—at least, not for basic text. In fact, Amazon is
very attached to the amateurish look of its justification.

HTML FIXES FOR KINDLE

68

So, in the event that a customer complains or that KDP
staff have occasion to examine your book, you may well
receive a “Quality Notice” asking you to degrade your
Kindle book to Amazon’s standards. And they will check
back with you periodically until the issue is “resolved.”
So far, though, I have been able to withstand these
depredations simply by explaining that I prefer to leave
my book as is.

But even if you decide—willingly or unwillingly—to
justify your text, there are still elements you won’t want
to justify, like headings and lines of verse. Though these
aren’t justified unless broken into two or more lines,
almost any line might be broken when read with a large
enough font or on a phone. So, it’s best to block
justification for at least certain paragraph classes.

How to do this selectively? The simplest way is
usually to turn off justification for the whole document
as described above, and then restore it for specific
classes. You can do the latter by adding a declaration to
the end of the style section in the document header.
Coming after the other class-defining declarations, it
will take precedence over them.

Let’s see how this would look in Word. Word writes
the ending of the header style section with a closing
comment marker and a closing style tag, like this:

-->
</style>

HTML FIXES FOR KINDLE

69

Comment markers within style tags are ignored in
modern HTML, so you could add your new style
declaration either before or after it. But to design a
macro that will be safe to repeat, search for the closing
comment marker and the closing style tag together, then
insert your declaration between. Here’s how it would
look if you were turning on justification for the two
paragraph classes Basic and BasicIndented.

-->
p.Basic, p.BasicIndented {text-align: justify;}
</style>

Of course, you could instead decide to do the
opposite: Leave on justification for the whole document
but turn it off for selected classes. Choose whichever is
simplest for you.

•
As I said, most Kindles will happily scale fonts for the
user when the sizes are based on points. So, you’d expect
the same treatment for format spaces like indents, space
before paragraphs, and space after, when based on
points or inches or centimeters. No such luck. When a
Kindle user scales the font, none of those spaces are
adjusted. What’s more, on a high-resolution Kindle, the
spaces appear about half size!

I’ve already suggested basing your font sizes on the
em as a relative measurement. The em is even more

HTML FIXES FOR KINDLE

70

useful in defining format spaces, as it allows them to
scale with the font size.

Keep in mind, though, that in ebook typography, the
em is based on the size of normal body text. So, an em of
indent or of space before or after would be the same size
no matter where it appears. For example, if your normal
body text is 12-point, an em of space will measure
12 points whether added to a normal paragraph or to a
heading. (That is, unless you apply one measurement
over another, making them cumulative.)

A typographic rule of thumb is that a first-line
paragraph indent should be 1 em. So, say you’ve
specified the indent in your source document as
one-quarter inch. The replacement in Word’s HTML
would be:

Find: text-indent:.25in
Replace: text-indent:1em

You could likewise substitute em measurements for
absolute ones for the following CSS properties (which
should be all lower-case in your HTML). The rule of
thumb would be 1 em for every 12 points.

• Margin-left, for a whole-paragraph left indent (as
for a block quote).

• Margin-right, for a whole-paragraph right indent
(which is honored only on newer Kindles).

HTML FIXES FOR KINDLE

71

• Margin-top, for space before the paragraph (which,
actually, you should avoid when possible, because some
Kindles may ignore it).

• Margin-bottom, for space after.
Using ems has one important limitation, though: For

format spaces—unlike for fonts—older Kindles round all
em measurements to the nearest whole em. For
consistency among Kindles, then, you can specify
spacing of 1 em or 2 ems, but not 1.5. That makes it
rather a blunt instrument.

•
While there are some format spaces you want
automatically scaled with the font, there are others that
should instead be relative to the whole screen display.
For this you would use percentages. Unlike when used
for fonts, percentages for format spaces relate to the
surrounding unit—in most cases, the display itself.

For example, you might want a paragraph positioned
halfway across the display, as for the closing of a letter.
(Don’t expect older Kindles to display this example
correctly.)

Love,
Lynne

The replacement in Word’s HTML might be

Find: margin-left:2.25in
Replace: margin-left:50%

HTML FIXES FOR KINDLE

72

A percentage of this type for left margin won’t work
properly on older Kindles, but only because they don’t
properly handle large left margins in any form. So, you
don’t lose anything by trying.

As another example, you might want to start each
chapter’s text about a third of the way down the display
from the chapter heading. In that case, in your source
document, you could set the space after the heading to a
rough number of points, then replace that number in
code. For Word’s HTML, it might look like so:

Find: margin-bottom:120.0pt
Replace: margin-bottom:33%

•
For your Kindle book, it’s best not to specify line
spacing—the space between lines in a paragraph. Not
specifying will allow readers of at least some Kindles to
adjust the spacing. Also—whether by intention or in
error—it can give you a much better page count for
payments in Amazon’s Kindle Unlimited program.

To omit the setting from Word’s exported HTML, you
could simply choose Single spacing in your source
document. With that setting, though, the line spacing
displayed in Word will be much tighter than the
Kindle’s default.

So, to emulate the Kindle while editing, you might
like to instead set your line spacing to “At Least” or
“Exactly” a certain number of points, then remove the

HTML FIXES FOR KINDLE

73

setting from Word’s exported HTML. That requires
finding two different phrases and replacing with
nothing. For line spacing of 14 points:

Find: line-height:14.0pt;

Find: mso-line-height-alt:14.0pt;

If you really do need to set line spacing for the Kindle
book itself, it’s best that this too be set with a relative
measurement. Word actually allows you to do this in
the source document with a “Multiple” setting for line
spacing. But you could instead set absolute spacing and
replace it later in HTML with a percentage relative to
font size. It might look like this:

Find: line-height:14.0pt;
Replace: line-height:120%;

•
As time has gone on, Amazon has grown more
aggressive in imposing its idea of suitable paragraph
formatting. For example, the practice of setting off
paragraphs both with a first-line indent and with space
between is redundant—a typographic abomination
we’ve inherited from the defaults of Word. Yet most
Kindles seek to enforce it, even when our HTML
specifies differently.

HTML FIXES FOR KINDLE

74

To thwart this, you must resort to guerilla action and
confuse your opponent. Basically, you have to remove
anything the Kindle might use to identify potential
victim paragraphs.

If you’re working in Word, that means avoiding
Normal style—Word’s default. Of course, you can
simply apply a style of a different name in your Word
document. But if that disrupts your workflow, you can
make the change later in code. In Word’s exported
HTML, just replace all instances of “MsoNormal” with
any other class name, with the provisos that it contain
no space and does not include “Normal” within it. As an
example, I substitute the name “Basic”.

Find: MsoNormal
Replace: Basic

If your HTML contains class names like
MsoNormalCxSpMiddle, this probably means you did
not turn off Word’s Editing option “Keep track of
formatting” as I recommended earlier. But if you keep
these, be sure to replace “MsoNormal” as part of the
names, as well as where it stands alone.

Aside from a possible class name change, you may
want to cloak your paragraphs so they don’t appear as
paragraphs at all! That’s done by replacing all paragraph
tags in your HTML with division tags. (HTML handles
“divs” exactly like paragraphs, except that less default
formatting is applied.)

HTML FIXES FOR KINDLE

75

Here are the two replacements you’ll need to make:

Find: <p
Replace: <div

Find: </p>
Replace: </div>

At least, that’s all you have to do in HTML exported
from Word, because Word’s code has a quirk that this
time works in your favor. When Word defines a class in
CSS, it specifies that the class can be associated with
either paragraphs or divs. So, after changing a
paragraph to a div in Word’s HTML, you’ll find that its
assigned class still works for it.

Another app, though, might be less generous,
requiring you to adjust your CSS selectors as well. If a
class is only specified to work for paragraphs, you can
make it work for divs instead with a replacement like
this:

Find: p.stylename
Replace: div.stylename

HTML FIXES FOR KINDLE

76

Fixes for Headings

Just as the Kindle will try to hijack the formatting of
your normal paragraphs, it may do the same to
headings. For one thing, some Kindles will make them
bold, even when you say not to!

This too can be worked around in your source
document, by defining and applying alternate styles in
preference to the standard styles for headings. But it’s
often more convenient to handle the change in HTML.

This is a bit trickier than with paragraphs, though,
because of the difference in how headings are exported.
Instead of winding up with a paragraph tag (<p>)
associated with a class, headings are set off by heading
tags (<h1>, <h2>, <h3>, and so on) with formatting of
their own. So, they’re harder to disguise to the Kindle.

For Word, you would start in your source document
by defining alternative heading styles as though you’d
apply them there—even though you won’t. For example,
for a top-level heading in Word, you could define an
alternative style named Level 1, specifying that it is
based on the Heading 1 style. With no change from the
base style definition, the two would produce identical
formatting. This alternative would then be included in
Word’s exported HTML among the class definitions for
paragraphs.

You would then replace the standard heading tags in
your HTML with paragraph tags associated with that
class. It would look as follows. (Note that the space in

HTML FIXES FOR KINDLE

77

the original style name has been removed in the
translation to class name.)

Find: <h1
Replace: <p class="Level1"

Find: </h1>
Replace: </p>

By the way, I tried “Head 1” as a style name in Word,
and the Kindle was smart enough to figure out I was
trying to fool it!

HTML FIXES FOR KINDLE

78

Fixes for Line Breaking

Word processors and page layout apps both feature
special formatting characters that let you control line
breaking and hyphenation. Though these characters are
allowed in HTML text as well, they are not always
recognized or honored by individual Web browsers and
ebook readers.

It’s important to know which of these characters you
can use on the Kindle, which of them you can’t, and
which can be replaced with equivalent HTML code. It’s
also important to understand how they can be used to
meet the unique challenges of flowing text. You can
then prevent much of the awkward line breaking that is
a bane of Kindle text display and that most Kindle
publishers don’t even know can be avoided.

•
One formatting character that is both common and
respected by Kindle is the nonbreaking space—also called
no-break space or hard space.

This character appears as a regular space but also
holds together the two adjacent words or numbers,
keeping them always on the same line when you don’t
want them split apart. It’s also used to hold together a
typographically correct ellipsis (. . .), which consists of
three periods with spaces between, plus one in front.
And it’s commonly used in HTML to create a string of
spaces, since browsers and ereaders won’t collapse them

HTML FIXES FOR KINDLE

79

all into one, as they do with normal spaces—but
Amazon now asks you not to string them together like
that.

Though this character can almost always be added in
your source document, you may still need to edit it in
HTML—and sometimes it’s more practical to add it
there in the first place. For either task, you’ll need to
find out how the character is or should be represented.
In Word’s exported HTML, for example, the
nonbreaking space appears as an entity name, while
another app might export it as an entity number.

 or

Or you might see instead the native Unicode
character as displayed by your code editor. BBEdit, for
example, shows it as a gray bullet (•). You can just copy
and paste this character into your Find or Replace, or
insert it with Option-Space, a standard keyboard
shortcut on the Mac.

It really doesn’t matter which of these forms is used
in your HTML, as long as it’s consistent for the sake of
your operations. In fact, you can switch forms as
convenient. My own HTML processing begins with the
nonbreaking space as an entity name, as exported by
Word, since that seems most convenient for editing.
Near the end, though, I convert them all to the Unicode
character, making my HTML text more readable for
troubleshooting. But in case I happen to reprocess,

HTML FIXES FOR KINDLE

80

there’s a safety step near the beginning to convert them
all to the entity name again.

•
In Kindle books, the use of nonbreaking spaces can go
beyond the common job of protecting phrases and on to
avoiding other kinds of awkward line breaking. In this
way, they can help overcome one of the chief faults of
flowing text in ebooks—the randomness of line breaks.

One example of awkward line breaking is a short,
one-syllable word appearing on a line by itself at the end
of a paragraph—sometimes called an orphan. This is
something a book designer definitely wants to avoid,
while Kindle text is full of them. In fact, it is one of the
Kindle’s main uglifying features.

The solution is to add a nonbreaking space in front of
any such word that might end up in that position. That
would pull down the last word of the line above if
needed to lengthen the final line. In From Word to
Kindle, I suggested adding nonbreaking spaces in your
source text, and that’s really the most reliable method.
But with grep, you can do almost as well in your HTML.

The following operation will place a nonbreaking
space in front of almost any word or number made up of
four characters or fewer at the end of a paragraph. You
can add, remove, or substitute punctuation marks as
needed. The apparently empty set of square brackets in
front has a regular space inside, and there’s another
toward the end, after the caret (^). Note that you must
first have moved or removed spaces in front of closing

HTML FIXES FOR KINDLE

81

tags, as prescribed in my section on cleanup. As with
any grep, test carefully when first using!

Find: []([a-zA-Z0-9][a-zA-Z0-9]?[a-zA-Z0-9]?
[a-zA-Z0-9]?[\.\?!’”:\)]*<[^ &]*/p>)
Replace: \ \1

You can change the maximum number of characters
by adding or removing instances of “[a-zA-Z0-9]?”. More
characters will give you fewer orphans but more
unevenness in the preceding line.

The operation above can handle a closing formatting
tag but not an opening one. To deal with an opening tag
for italics, bold, or underlining, add the following Find,
using the same Replace as above.

Find: [](<[ibu]>[a-zA-Z0-9][a-zA-Z0-9]?[a-zA-Z0-9]?
[a-zA-Z0-9]?[\.\?!’”:\)]*</[ibu]>[\.\?!’”:\)]*<[^ &]*/p>)

Though both of these orphan operations allow
punctuation before the final tag, they don’t require it, so
their use is not limited to regular paragraphs. With the
“p” at the end, you can make them work on anything
you care to fit inside <p> tags—including headings, if
you’ve chosen to disguise them.

Other substitutes for “p” will make them work on
additional defined elements. Substituting “li” will apply
orphan control to list items. Substituting “h1” will

HTML FIXES FOR KINDLE

82

handle top-level (undisguised) headings. To handle all
levels of heading, substitute “h[1-6]”.

One drawback of the operations above is that they
take no account of the length of the preceding word. If
the last word is four characters and the preceding word
is eight, this creates quite a gap at the end of the
shortened line. This becomes more important if your
text is justified.

As an alternative, you could use something like this,
which avoids an orphan of exactly one character as long
as the preceding word is no longer than nine.

Find: ([][“‘\(]*[a-zA-Z0-9]?[a-zA-Z0-9]?[a-zA-Z0-9]?
[a-zA-Z0-9]?[a-zA-Z0-9]?[a-zA-Z0-9]?[a-zA-Z0-9]?
[a-zA-Z0-9]?[a-zA-Z0-9])[]([a-zA-Z0-9][\.\?!’”:\)]*
<[^ &]*/p>)
Replace: \1\ \2

With modifications, you would set up a series of
such operations, each one dealing with a different
character length combination. For example, starting
with the operation above, a workable series might be
1/9, 2/7, 3/5, 4/3, and 5/1. You could also make the
operations handle more cases with some judicious
additions—for instance, inserting an optional
apostrophe before the last character of words with three
or more; or adding a hyphen and dashes to the first pair
of brackets.

HTML FIXES FOR KINDLE

83

•
Nonbreaking hyphens are special characters often used to
block automatic line breaking between hyphenated
words or in the middle of other hyphenated terms. Even
though it’s normally fine to include them in HTML text,
they don’t work on all Kindles, and on some can even
trigger a font change for the entire book! So, you need to
keep them off the Kindle.

But removing them from your source document may
be less than convenient if the document will be used
also for another ebook format or a print version. The
solution is to leave nonbreaking hyphens in your source
but later replace them with regular hyphens in HTML.

As with nonbreaking spaces, though, exactly how
you find them will depend on how they appear in your
HTML document. Word for Windows, like many apps,
will export it as an entity number. (There’s no entity
name for this character.)

‑

Word for the Mac exports the Unicode character
itself to its HTML, and you can copy and paste it from
there. (You cannot copy it from a source document in
Word, because the character used there is only a
substitute.) You can also get the Unicode character from
the Mac’s Character Viewer by searching for “non-
breaking hyphen” (with the first word hyphenated).
However you acquire it, the character will look like a

HTML FIXES FOR KINDLE

84

regular hyphen, so you’ll have to keep track of the
difference.

Losing use of the nonbreaking hyphen is a
typographic nuisance, to say the least. But you can more
or less make up for it—at least on newer Kindles. For
example, for this book and my others on Kindle
publishing, I want to avoid automatic line breaking in
the middle of “UTF-8.” This can be done with a find-and-
replace like the following, which shows the HTML
entity in the Find (between “UTF” and “8”), and a regular
hyphen in the Replace.

Find: UTF‑8
Replace: UTF-8

The enclosing span tags, with their white-space
attribute and nowrap value, take the place of the
nonbreaking hyphen, with the same job of blocking
automatic line breaking. I like to call the tags and their
enclosure a nonbreaking span. Older Kindles, which do
not honor this, will safely ignore it.

This kind of simple replacement works fine to
protect a limited number of terms or phrases. But to
protect a variety of them, you might want to turn to
grep. The following is how I would write a grep find-
and-replace to make all needed substitutions for
nonbreaking hyphens in HTML from Word for
Windows. For the default encoding of Word for the Mac,

HTML FIXES FOR KINDLE

85

in place of this Find’s HTML entity (‑), you
would place the actual Unicode character.

Find: ([a-zA-Z0-9]*)‑([a-zA-Z0-9]+)
Replace: \1-\2

This operation works even when a phrase has more
than one nonbreaking hyphen—as, for example, in a
hyphenated ISBN. In that case, though, it will generate
excess code that does no harm but can be trimmed if
you like. Just find the following and replace with
nothing.

Find:

Finally, you should replace any remaining
nonbreaking hyphens with regular ones—just in case
the grep search missed any.

The examples above assume you’ve inserted
nonbreaking hyphens in your source document as
needed and only want to replace them in HTML. That’s
certainly the most reliable approach. But if they were
never in your source document to begin with, you can
write limited find-and-replace operations for your
HTML like the one above for “UTF-8”—only this time
with a regular hyphen in the Find instead of a
nonbreaking one.

HTML FIXES FOR KINDLE

86

•
Besides the nonbreaking hyphen, the Kindle has trouble
with its cousin, the soft hyphen—or Optional Hyphen, as
it’s called in Word. This character tells the reading app
where a word can or should be hyphenated when it falls
at the end of a line. You would commonly insert one in a
word processor or page layout app when automatic
hyphenation is dividing a word incorrectly, awkwardly,
or not at all. Soft hyphens might also be inserted by an
OCR app as it converts scanned pages to editable text,
replacing all normal hyphens it finds at the ends of
lines.

Unless your word processor is specially set to display
these characters, a soft hyphen should normally be
hidden, to appear only when the word is broken at the
end of a line—in which case it displays as a regular
hyphen. And that’s how some Kindles handle it. But
others show it as a regular hyphen even when the word
is in the middle of the line. Because of this incorrect
behavior, any soft hyphens should be removed from
your Kindle book.

This is simple enough to do in your source
document—in Word, for example, you just choose
“Optional Hyphen” from the Special menu in Find and
Replace, then replace with nothing. But you can also do
it in HTML—and that’s a good idea even just as a
safeguard, in case any soft hyphens have slipped in
without your knowledge.

HTML FIXES FOR KINDLE

87

Here again, you’ll have to determine how to find the
character. In HTML from Word, both for Windows and
Mac, the soft hyphen is inserted as the Unicode
character itself. So, copy one from your exported
HTML—not from your source document in Word, which
uses a substitute—and paste it into your Find box. Or get
one by searching for “soft hyphen” in the Mac’s
Character Viewer, or in the Windows Character Map
with “Advanced view” selected. (In a BBEdit Text
Factory, if you paste the character into Find text, the app
substitutes a special code that works just as well.)

Another app might export the soft hyphen as an
HTML entity instead.

­ or ­

•
Another special formatting character that does work on
the Kindle—sort of—is the zero width non-joiner. This is
something like a soft hyphen without the hyphen. You
can use it to indicate preferred break points in Web
addresses, code, and other long strings of characters
that are likely to be divided between lines but should not
be hyphenated.

Without this, the Kindle may break the line
randomly, wherever it runs out of room. Older Kindles
may also insert an unwanted hyphen or hide part of the
text beyond the right margin. Here, for example, is a
Web address, first without the non-joiner, and then

HTML FIXES FOR KINDLE

88

with it. Adjust the font size on your Kindle to see the
effect.

www.aaronshep.com/kidwriter/books/Bus
iness.html

www.aaronshep.com/kidwriter/books/
Business.html

Actually, it’s a fudge to say the Kindle supports the
zero width non-joiner character. Older Kindles do
support it, recognizing and acting on either the Unicode
character or its entity when inserted into HTML. Newer
Kindles, though, recognize the non-joiner only as one of
its entity forms:

‌ or ‌

This is probably to let those Kindles supply the
function of the non-joiner even with fonts that lack the
Unicode character. But it makes it a bit trickier to work
with the non-joiner in your source document. The app
you compose in must not only support the character but
must then convert it to entity form when exporting to
HTML.

Luckily for users of Word for Windows, that app
does both these things, offering the non-joiner on the
Special Characters tab of its Symbol dialog box under

HTML FIXES FOR KINDLE

89

the name No-Width Optional Break. You’re not so lucky,
though, if you’re working in one of Word’s Hyperlink
dialogs, which don’t fully support special characters, or
in Word for the Mac, which neither inserts nor
translates this character.

In such cases, you might instead insert substitute
code. For instance, you could insert something in your
source document like “{zwnj}” or one or more vertical
slashes (|)—anything your code editor can easily find
later and replace with the non-joiner entity. The main
disadvantage is you have to remember to remove the
substitute code from your source document if your text
goes to print! (I haven’t always remembered.)

Why not just add the HTML entity directly into your
source document? Because here’s how it would look on
export to HTML:

&zwnj;

In other words, the initial ampersand would be turned
into an ampersand entity so it wouldn’t be confused
with an ampersand in HTML code. This change would
invalidate the entity you inserted and make it display as
text!

For those who prefer not to mess up the source
document with substitute code, another option is to
insert the non-joiner directly into HTML. If you have
only a narrow use for the non-joiner, you can handle
this with a specialized find-and-replace.

HTML FIXES FOR KINDLE

90

For example, in From Word to Kindle, I have several
hyperlinked addresses of Amazon KDP Help pages,
varying only in the final identifier. Each one appears in
a paragraph by itself—meaning I can count on HTML
tags being placed immediately before and after. My
initial solution was an operation like this:

Find: >kdp.amazon.com/help?topicId=
Replace: >kdp.amazon.com/help?‌topicId=

Note the closing angle bracket that begins both the
Find and the Replace. Including this was essential,
because it limited the operation to addresses found in
text. Without it, the operation would also have changed
addresses in HTML link code, making my links invalid!
(In link code, such addresses are instead always
preceded by a colon.)

Also note how I included text from after the final
break point as well as before. This way, if the operation
was repeated, it wouldn’t add a second non-joiner. (An
alternative would be to add a follow-up operation,
finding two non-joiners together and replacing with
one.)

Already specialized in function, the zero width non-
joiner can be less versatile than you might think, due to
the quirkiness and bugginess of Kindle support. In fact,
I’ve given up trying to figure out all the positions in
which it does or does not work properly. The list varies
on different Kindles, and sometimes on the same Kindle.

HTML FIXES FOR KINDLE

91

Pinning it down is complicated by the fact that, even
without the non-joiner, different Kindles break lines in
different places.

My general advice, then, is to insert the non-joiner
wherever you think it might be helpful, then hope for
the best. But there are a couple of caveats, too. Most
importantly, the non-joiner is best used in left-aligned
text. That’s because some older Kindles treat it more like
a thin space, allowing text on either side to move apart
when justified.

Also, you must take care never to place the non-
joiner right after an HTML tag. On older e-ink Kindles,
this can cause text from before the tag to repeat! To
guard against slipups, you can run a safety operation
that removes any non-joiner in that position. If you
never use a right angle bracket (>) in text, a simple find-
and-replace like the following will do.

Find: >‌
Replace: >

Otherwise, this grep will take care of it:

Find: (<[^>]*>)‌
Replace: \1

•
Whenever you adjust line breaking, there’s a price to
pay. In left-aligned text, it will make your lines less

HTML FIXES FOR KINDLE

92

even. In justified text, it will increase spacing between
words—and in the absence of hyphenation, this can get
to the point of looking really bad.

In print, you can often find a way to even things out
within the paragraph, but that’s obviously not possible
on the Kindle. So, when deciding how much to adjust,
you’ll need to find a good balance, weighing the benefit
of your changes against the cost.

HTML FIXES FOR KINDLE

93

Update!

With the introduction of Enhanced Typesetting in 2015 for
the newest Kindles, Amazon has provided some nice
improvements to Kindle typography. Unfortunately, to
balance this, they have totally screwed up some things that
were working before. Perhaps the most important of these is
the Kindle’s handling of nonbreaking spaces, which are in
most cases now treated simply as regular spaces.

Reportedly, this was meant to prevent the nonbreaking
space from being misused to cement long strings of text,
which then extend past the right screen edge. In preventing
that, though, Amazon has done away with legitimate usage
as well. Whether this will eventually be fixed, I can’t say.

Luckily, Enhanced Typesetting still honors “nonbreaking
spans” such as I recommended as replacements for
nonbreaking hyphens. These spans can replace the
nonbreaking spaces or else supplement them—in other
words, you could leave the nonbreaking spaces in place for
older Kindles but create nonbreaking spans around them. An
advantage to replacing them is that spacing between words
on some Kindles will then be more even in justified text.
(Note that, if you leave the nonbreaking spaces, any fix is
likely to keep inserting additional tags if you run it more than
once, so you’d have to correct for that.)

I’ll leave you to work out the details. You might also want
to come up with a fix for the way Enhanced Typesetting
currently breaks decimals after a leading decimal point! (One
possibility: Add a zero before the decimal point.)

HTML FIXES FOR KINDLE

94

•
Probably the most important new feature of Enhanced
Typesetting is automatic hyphenation. This is a plus whether
the text is justified or left-aligned, as it helps even out the
lines. It raises the problem, though, of what to do for text you
don’t want hyphenated—like headings, poetry, or software
code.

Turning off hyphenation in Word or another word
processor won’t make any difference in its exported HTML,
but CSS to control hyphenation can be added directly. Note
that the CSS declaration for this has not yet been
standardized. But popular Web browser kernels—like
WebKit, which Amazon uses to render Kindle text—provide
temporary CSS property names to use meanwhile. And it’s
one of these temporary names that can currently control
hyphenation on Kindle:

-webkit-hyphens

Don’t omit the initial hyphen! It’s essential! (That’s how
temporary CSS property names are normally constructed.)
And keep it all lower case.

In CSS, it’s fine to add declarations with alternate
property names if you’re not sure which one will work. So,
even though this currently has no effect, I’d play safe by
adding a separate declaration with the name most likely to
become standard:

hyphens

Possible values for either of these properties are:

HTML FIXES FOR KINDLE

95

• “Auto,” for full hyphenation. This is the default for
Enhanced Typesetting.
• “Manual,” for hyphenation only at existing hyphens and

soft hyphens. This is the value you most likely want when
turning off automatic hyphenation. (Remember, though, that
soft hyphens cause problems on Kindle, so those shouldn’t
be in your text!)
• “None,” for no hyphenation at all.
To apply one of these values to your entire document,

you can add your declaration(s) to your opening body tag. Or
you can apply them to individual CSS classes. Or you could
do both, setting one value as a document-wide default and a
contrary one for individual styles.

If you assign a value of “auto,” you might need a
language attribute added to your opening html tag. For
English, it would look like this:

<html lang="en">

When testing hyphenation control, keep in mind that the
files Amazon produces for proofing are not the same files it
provides to customers—and that even those files may be
modified any time after publication. So, even when you don’t
see these controls work in your proof or in an immediate
purchase, they will hopefully work in your book later on.

In fact, if you do see hyphenation in your proof or
immediate purchase, it may be a different kind of
hyphenation than you would get later. Kindle on iPad and
iPhone seems to have two separate hyphenation systems—
a competent one that’s part of Enhanced Typesetting, and
an older one that produces wild errors about half the time. In

HTML FIXES FOR KINDLE

96

some situations you’ll get one system, in other situations, the
other.

Yes, it’s frustrating!

HTML FIXES FOR KINDLE

97

Fixes for Pictures

In the HTML for your Kindle book, pictures are inserted
in the text by means of an image tag ().
Minimally, it might look something like this:

<img src="image01.jpg" width="576" height="864"
alt="">

As in this example, it’s common to provide a picture’s
pixel dimensions within the tag. This is considered good
practice, as it speeds up page rendering. On the oldest
Kindles, it also prevents quirky picture handling.
Without these stated pixel dimensions, those Kindles
might automatically enlarge a small picture to the point
of pixelation; or the text under a larger picture might be
pushed unnecessarily to the next page.

Word is among the apps that will conveniently write
these dimensions into HTML for pictures inserted in
your document. Be aware, though, that on export, Word
may also alter the picture from its original dimensions!
(For the full story on that, see my book Pictures on
Kindle.)

Note that older Kindles can read the picture’s
dimensions only in bare-bones HTML format, as shown
above. Dimensions in CSS format—as may be written by
some ebook creation software—will be ignored. The
example above, but with the kind of CSS dimensions you
don’t want, would look like this:

HTML FIXES FOR KINDLE

98

<img src="image01.jpg" style="width: 576px;
height: 864px;" alt="">

In case you need it, here’s a bit of grep for converting
from CSS pixel dimensions to HTML—assuming you
have no other CSS properties within the tag’s style
attribute. The apparently empty bracket pairs enclose
spaces. Bracket pairs with straight quotes include both a
single and a double. Of course, if your CSS gives height
before width, you’ll have to move things around.

Find: (<img[^>]*) style=['"]width:[]?([0-9]+)px;[]?
height:[]?([0-9]+)px[;]?['"]
Replace: \1 width="\2" height="\3"

After telling you how to properly include pixel
dimensions and why, I also have to tell you that that’s
no longer the best practice. Because of the wide range of
resolutions among Kindles, it’s now best to replace these
dimensions with CSS that simply tells the Kindle to
display the picture as large as possible. Otherwise, your
picture may appear much too small on high-resolution
Kindles. And that’s a bigger problem than any the
replacement could cause on older ones.

To force a picture to display as large as possible on
newer Kindles, use CSS to specify a width of 100% and a
height of “auto”—or a width of “auto” and a height of
100%. Either way simply tells the Kindle to expand the
picture as needed to fit between margins. If the picture

HTML FIXES FOR KINDLE

99

is already big enough to need no expansion, the
instruction has no effect.

Here’s the style attribute to place inside the picture’s
image tag—assuming the tag does not already have one.

style="width: 100%; height: auto;"

And here’s the grep that will substitute this for the
HTML pixel dimensions written by Word.

Find: <img width=[0-9]+ height=[0-9]+
Replace: <img style="width: 100%; height: auto;"

Misinterpreting Amazon’s vague guidelines, Kindle
book designers sometimes skip the CSS and simply
specify an HTML image width of 100% to handle both
older and newer Kindles. Though image size
percentages were allowed in earlier HTML versions,
HTML5 considers this an error—and in any case, older
Kindles still can’t use them. It may appear these Kindles
are reading a percentage when the picture is enlarged—
but that’s just what they do when they get no
dimensions at all. And they’re still enlarging quirkily.

Of course, if you’re going to enlarge your picture to
the margins, you’ll need to make sure it has enough
pixels to display at a decent resolution. (Again, if you
don’t understand this, see Pictures on Kindle.)

HTML FIXES FOR KINDLE

100

•
Word is oddly prone to introducing HTML errors in its
image tags. These errors are ignored by the Kindle
converter, so there’s no great need to fix them. But if
you want to fix them anyway—say, to keep a syntax
checker from reporting them—it’s easy enough to do.

If you’re exporting from the old .doc format—Word’s
native format in any version before 2007—add the
following empty attribute anywhere within the tag.
(Those are two straight double quotes, with no space
between.) You can use a find-and-replace similar to the
one I gave above for adding the style attribute.

alt=""

If you’re exporting from .doc and are on a Mac, your
image tags will have a problem also with their ID
attributes, which will all look something like this:

id="_x0000_i1025"

ID values are not supposed to start with an underscore
in older HTML versions such as used by Word, so just
remove that.

If you’re using the newer .docx format, on Mac or
Windows, the ID attributes will have a different
problem. You’ll see them numbering the pictures,
starting like this:

HTML FIXES FOR KINDLE

101

id="Picture 1"

The ID value should have no space within it, so just
remove the space from between “Picture” and the
numeral.

Or for either problem with the ID attribute, you can
just remove the attribute entirely. It serves no useful
purpose in your Kindle book. The following grep should
work for any Word version.

Find: (<img[^>]*) id="[^"]+"
Replace: \1

HTML FIXES FOR KINDLE

102

Update!

Amazon has become stricter about the resolutions of “full-
page” pictures. Basing its requirements on a maximum
display size of 4 ! 6 inches, Amazon wants any picture at
those full dimensions to be at a resolution of at least 300 ppi,
for a minimum of 1200 ! 1800 pixels. Full-page pictures with
lower resolutions may cause a book to be flagged for low
quality or even taken off sale.

What this means in practical terms is that any picture
stretched in HTML to 100% of display width must be at least
1200 pixels wide in its original dimensions. Any picture
stretched to 100% of height must be at least 1800 pixels
high.

In most cases, you would want that anyway. But it’s a
special problem if your book is in Microsoft Word for Mac,
with its image dimension limit of 22 inches and its forced
export resolution of 72 ppi. Within those limits, you can’t do
much better on a 2:3 image than 1008 ! 1512 pixels—too
short in either dimension. Only a horizontal or more-or-less
square image could meet Amazon’s requirements.

If you’re using Word for Mac, then, you might consider
switching to a more suitable app—Jutoh comes to mind. You
could even just move your book to Word for Windows—
maybe in a virtual machine—for its HTML export at 96 ppi.
But if you’re sticking with Word for Mac, here is a grep
sequence that will stretch the picture width or height to 100%
in Word’s HTML only if the image has enough pixels in that
dimension.

HTML FIXES FOR KINDLE

103

Find: <img width=1[2-9][0-9][0-9] height=[0-9]+
Replace: <img style="width: 100%; height: auto;"

Find: <img width=[2-9][0-9][0-9][0-9] height=[0-9]+
Replace: <img style="width: 100%; height: auto;"

Find: <img width=[0-9]+ height=1[8-9][0-9][0-9]
Replace: <img style="width: auto; height: 100%;"

Find: <img width=[0-9]+ height=2[0-9][0-9][0-9]
Replace: <img style="width: auto; height: 100%;"

HTML FIXES FOR KINDLE

104

Fixes for Navigation

Most users of older Kindles have seen this problem
when jumping somewhere in a Kindle book, perhaps
when following a link in the text or the table of
contents: The chapter heading loses its formatting and
appears in the Kindle’s default paragraph style. And if
you then try to move to the page previous, it takes two
attempts.

If you’ve seen that yourself, chances are you’ve
written it off as one of those obscure bugs that plague
most young computing devices. But it’s not.
Mobipocket, the Kindle’s original format, was actually
designed to work that way. And when you understand
why, you can stop it from happening.

Let’s look at sample code for a typical chapter
heading you might reach from a link.

<h1>Chapter 1</h1>

“Chapter 1” is the text of the heading—what you see
on the Kindle screen—and the entire phrase is enclosed
by the opening and closing heading tags. The remainder
of the code, which I’ve shown in bold, is called an HTML
anchor. The opening tag of the anchor is the actual
target of the link that brings you here, with the value of
its name attribute serving as a unique identifier.

This sample is actually close to the way Word would
write the anchor as it converts bookmarks in your

HTML FIXES FOR KINDLE

105

document into HTML. In Word, bookmarks—whether
set manually or automatically—are how you mark
destinations for the internal links, table of contents, and
Go To menu items for your Kindle book.

The position of this anchor’s closing tag—
immediately following the opening tag—is what you get
when you set your Word bookmark with the cursor in
the text but nothing selected. But if you were to select
the heading text, “Chapter 1”—or if you were to let
Word generate a table of contents automatically—the
anchor tags would instead enclose the text like this:

<h1>Chapter 1</h1>

The different position of the closing tag doesn’t
matter to the HTML, as that tag doesn’t actually do
anything—it’s just a formality, because in HTML, you
usually need to close what you open. We just have to be
aware of the variation if we’re going to manipulate the
tag.

•
OK, we’ve seen how a typical heading with anchor is
constructed, and you may already have guessed why
older Kindles might have trouble with it. But before I
spell it out, let’s look at the most basic difference
between Mobipocket and its competitor, EPUB, as well
as Mobipocket’s successor and EPUB’s near relation,
Kindle Format 8.

HTML FIXES FOR KINDLE

106

Nowadays, we’re used to having gigabytes of
memory on our computers, and these have no trouble
holding huge documents in memory for rapid
processing. But the situation was very different with the
cell phones for which Mobipocket and EPUB were
originally developed. In these phones, memory was
miniscule. As small as is the typical file of an ebook,
there was no way to hold the whole thing in the phone’s
memory at once.

To deal with this, two different strategies emerged.
The strategy of EPUB was to break down the book into
tiny files—typically a chapter each—and keep that
much in memory. This let the software jump back and
forth easily—as long as that was in the same chapter.
But with the extremely weak processors in the phones,
the price of this arrangement was slow response time.

The Mobipocket format was a radical departure from
this. It held none of the book in memory other than the
page being displayed. It simply moved forward and
backward in the file. Forward and backward, in a
straight line, with no memory of what came before or
after. This made it quicker than EPUB, but also, well,
stupid.

Let’s get back to our sample heading. Let’s say it was
in an EPUB ebook. If you jumped to this heading, the
software would locate the proper file and load it into
memory. Then it would look at the heading—the entire
line of code—and know that it was a heading. And it
would know exactly how to format it.

HTML FIXES FOR KINDLE

107

Now let’s say that it’s a Kindle book on an older
Kindle. You jump to the heading. The Kindle moves
forward through the file until it locates the anchor.
Then it displays enough of the text following to fill the
screen.

What’s missing? The opening heading tag! It’s right
there in front of the anchor, but the Kindle can’t read
backwards and has no memory of what came before! So,
with no clue how the text should be formatted, it reverts
to default paragraph formatting.

Now try to move to the page previous. (Also assume,
if you will, that there’s a page break just above the
heading.) What happens? Nothing—or at least nothing
seems to happen. But what really happens is that the
Kindle moves you from your position in front of the
opening anchor tag to a new position in front of the
opening heading tag—the true top of the page. And of
course, from that position, you can move to the
previous page on the next try.

I think you can understand now the main
disadvantage of the Mobipocket approach, and maybe
also one way to work around it. Yes, all we would have
to do is move the anchor—the opening and closing tags
together—to a new position in front of the opening
heading tag. Then, when you jumped to that position,
the Kindle would read the heading tag that follows and
know what to do about formatting. It would also be in
position to properly move to the previous page. Though
this anchor placement is not standard HTML, your
syntax editor would not likely object to it, either.

HTML FIXES FOR KINDLE

108

After this change, our example would look like this:

<h1>Chapter 1</h1>

This is in fact the solution I recommended in earlier
versions of this book. But even though it works fine for
Kindle, placing the anchor in front can cause problems
if you later convert your HTML or MOBI file to EPUB. In
some EPUB readers, links may then land you on the page
before the target, and in rare cases, you may even see a
blank page inserted.

A better solution is to convert the anchors to a
different format entirely. HTML allows you to turn any
opening tag into an anchor by simply adding an ID
attribute (“id”). Continuing with our example, it would
look like this:

<h1 id="chapter1">Chapter 1</h1>

This form of anchor avoids problems both in EPUB and
on all Kindles.

•
With the unique attribute values and the variations in
tag position, it’s obviously going to take more than a
simple find-and-replace to convert the anchors
automatically. But here again, grep comes to the rescue.

The following operation will use the value of an
anchor’s name attribute to form a new ID attribute in
the heading’s or paragraph’s opening tag. At the same

HTML FIXES FOR KINDLE

109

time, it will remove the original anchor. The characters
in the second and third pair of square brackets are a
single and double quote. The question marks are needed
to prevent “greedy” searches for the longest match.
(Notepad++ users: Also to prevent greedy searches, this
is one time you must be absolutely sure the option
“. matches newline” is off!)

Find: (<[^>]*)(.*)(.*?)(.*)
Replace: \1 id="\3"\2\4\5

This operation comes with just a few caveats:
• It must be performed after you’ve removed

unneeded line break characters.
• You should not have more than one anchor per

heading or paragraph. If you do, the operation will
convert only one of them at a time. And though a repeat
of the operation would remove a second anchor, it
would add a second ID attribute to the opening tag,
producing a syntax error.

• The operation won’t work if the opening and
closing anchor tags enclose a link in the text. So, either
make sure those anchor tags are adjacent, or keep them
away from links.

• For safety, make sure that bookmarks in the source
document include only those needed for navigation of
the Kindle book. Also make sure that no paragraph
includes more than one of your own bookmarks. (For

HTML FIXES FOR KINDLE

110

tips on viewing, editing, and cleaning up bookmarks in
Word, see From Word to Kindle.)

This is a particularly powerful operation, so be sure
to test carefully!

MORE BOOKS FOR YOU

HTML FIXES FOR KINDLE

112

From Word to Kindle
Self Publishing Your Kindle Book with
Microsoft Word, or Tips on Formatting

Your Document So Your Ebook
Won’t Look Terrible

By Aaron Shepard

HTML FIXES FOR KINDLE

113

Pictures on Kindle
Self Publishing Your Kindle Book with Photos,
Art, or Graphics, or Tips on Formatting Your

Ebook’s Images to Make Them Look Great

By Aaron Shepard

HTML FIXES FOR KINDLE

114

The Business of Writing for Children
An Award-Winning Author’s Tips on Writing

Children’s Books and Publishing Them, or How
to Write, Publish, and Promote a Book for Kids

By Aaron Shepard

HTML FIXES FOR KINDLE

115

Adventures in Writing for Children
More Tips from an Award-Winning Author on

the Art and Business of Writing Children’s
Books and Publishing Them

By Aaron Shepard

HTML FIXES FOR KINDLE

116

Aaron Shepard’s
Sales Rank Express

Quickly Check Amazon Sales Ranks and More
for Print Books, Kindle Books, and Audiobooks
on Amazon Worldwide with the Premier Sales

Rank Checker, Book Monitor, and Market
Research Tool for Authors and Publishers

www.salesrankexpress.com

<<

 /ASCII85EncodePages false

 /AllowPSXObjects false

 /AllowTransparency false

 /AlwaysEmbed [

 true

]

 /AntiAliasColorImages false

 /AntiAliasGrayImages false

 /AntiAliasMonoImages true

 /AutoFilterColorImages false

 /AutoFilterGrayImages false

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /CalGrayProfile (None)

 /CalRGBProfile (Adobe RGB \0501998\051)

 /CannotEmbedFontPolicy /Warning

 /CheckCompliance [

 /None

]

 /ColorACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorConversionStrategy /sRGB

 /ColorImageAutoFilterStrategy /JPEG

 /ColorImageDepth -1

 /ColorImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /ColorImageDownsampleThreshold 1

 /ColorImageDownsampleType /Bicubic

 /ColorImageFilter /DCTEncode

 /ColorImageMinDownsampleDepth 1

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /ColorImageResolution 200

 /ColorSettingsFile ()

 /CompatibilityLevel 1.3

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /CreateJDFFile false

 /CreateJobTicket false

 /CropColorImages false

 /CropGrayImages false

 /CropMonoImages false

 /DSCReportingLevel 0

 /DefaultRenderingIntent /RelativeColorimetric

 /Description <<

 /ENU ()

 >>

 /DetectBlends true

 /DetectCurves 0.10000

 /DoThumbnails false

 /DownsampleColorImages true

 /DownsampleGrayImages true

 /DownsampleMonoImages true

 /EmbedAllFonts true

 /EmbedJobOptions true

 /EmbedOpenType false

 /EmitDSCWarnings false

 /EncodeColorImages true

 /EncodeGrayImages true

 /EncodeMonoImages true

 /EndPage -1

 /GrayACSImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageAutoFilterStrategy /JPEG

 /GrayImageDepth -1

 /GrayImageDict <<

 /HSamples [

 1

 1

 1

 1

]

 /QFactor 0.15000

 /VSamples [

 1

 1

 1

 1

]

 >>

 /GrayImageDownsampleThreshold 1

 /GrayImageDownsampleType /Bicubic

 /GrayImageFilter /DCTEncode

 /GrayImageMinDownsampleDepth 2

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /GrayImageResolution 200

 /ImageMemory 524288

 /JPEG2000ColorACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000ColorImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayACSImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /JPEG2000GrayImageDict <<

 /Quality 30

 /TileHeight 256

 /TileWidth 256

 >>

 /LockDistillerParams true

 /MaxSubsetPct 100

 /MonoImageDepth 8

 /MonoImageDict <<

 /K -1

 >>

 /MonoImageDownsampleThreshold 1

 /MonoImageDownsampleType /Bicubic

 /MonoImageFilter /FlateEncode

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /MonoImageResolution 200

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /NeverEmbed [

 true

]

 /OPM 0

 /Optimize true

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /ConvertToRGB

 /DestinationProfileName (sRGB IEC61966-2.1)

 /DestinationProfileSelector /UseName

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements true

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.25000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /UseName

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /UseDocumentProfile

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXBleedBoxToTrimBoxOffset [

 0

 0

 0

 0

]

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXOutputCondition ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputIntentProfile (HP Indigo Press 5000 Semimatte exp05 2004/03/18)

 /PDFXRegistryName ()

 /PDFXSetBleedBoxToMediaBox true

 /PDFXTrapped /False

 /PDFXTrimBoxToMediaBoxOffset [

 0

 0

 0

 0

]

 /ParseDSCComments false

 /ParseDSCCommentsForDocInfo true

 /ParseICCProfilesInComments true

 /PassThroughJPEGImages false

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo false

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Remove

 /UCRandBGInfo /Remove

 /UsePrologue false

 /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<
 /HWResolution [600 600]
 /PageSize [720.000 540.000]
>> setpagedevice

